
Prof. Rasmita Lenka

Overview
• Binary logic and Gates
• Boolean Algebra

– Basic Properties
– Algebraic Manipulation

• Standard and Canonical Forms
– Minterms and Maxterms (Canonical forms)
– SOP and POS (Standard forms)

• Karnaugh Maps (K-Maps)
– 2, 3, 4, and 5 variable maps
– Simplification using K-Maps

• K-Map Manipulation
– Implicants: Prime, Essential
– Don’t Cares

• More Logic Gates

2023/7/13 Boolean Algebra PJF - 2

Binary Logic

• Deals with binary variables that take 2 discrete
values (0 and 1), and with logic operations

• Three basic logic operations:

– AND, OR, NOT

• Binary/logic variables are typically
represented as letters: A,B,C,…,X,Y,Z

2023/7/13 Boolean Algebra PJF - 3

Binary Logic Function

F(vars) = expression

Example: F(a,b) = a’•b + b’

G(x,y,z) = x•(y+z’)

2023/7/13 Boolean Algebra PJF - 4

set of binary

variables

Operators (+, •, ‘)
Variables

Constants (0, 1)

Groupings (parenthesis)

Basic Logic Operators

• AND

• OR

• NOT

• F(a,b) = a•b, F is 1 if and only if a=b=1

• G(a,b) = a+b, G is 1 if either a=1 or b=1

• H(a) = a’, H is 1 if a=0

2023/7/13 Boolean Algebra PJF - 5

Binary

Unary

Basic Logic Operators (cont.)

• 1-bit logic AND resembles binary
multiplication:

0 • 0 = 0, 0 • 1 = 0,

1 • 0 = 0, 1 • 1 = 1

• 1-bit logic OR resembles binary addition,
except for one operation:

0 + 0 = 0, 0 + 1 = 1,

1 + 0 = 1, 1 + 1 = 1 (≠ 102)

2023/7/13 Boolean Algebra PJF - 6

Truth Tables for logic operators

Truth table: tabular form that uniguely represents the relationship
between the input variables of a function and its output

A B F=A•B

0 0 0

0 1 0

1 0 0

1 1 1

2023/7/13 PJF - 7Boolean Algebra

2-Input AND

A B F=A+B

0 0 0

0 1 1

1 0 1

1 1 1

2-Input OR

A F=A’

0 1

1 0

NOT

Truth Tables (cont.)

• Q: Let a function F() depend on n variables.
How many rows are there in the truth table of
F() ?

2023/7/13 Boolean Algebra PJF - 8

 A: 2n rows, since there are 2n possible
binary patterns/combinations for the n
variables

Logic Gates

• Logic gates are abstractions of electronic circuit
components that operate on one or more input
signals to produce an output signal.

2023/7/13 Boolean Algebra PJF - 9

2-Input AND 2-Input OR NOT (Inverter)

A A AB B
F G H

F = A•B G = A+B H = A’

Timing Diagram

2023/7/13 Boolean Algebra PJF - 10

A

B

F=A•B

G=A+B

H=A’

1

1

1

1

1
0

0

0

0

0

t0 t1 t2 t3 t4 t5 t6

Input
signals

Gate
Output
Signals

Basic
Assumption:
Zero time for
signals to
propagate
Through gates

Transitions

Combinational Logic Circuit
from Logic Function

• Consider function F = A’ + B•C’ + A’•B’

• A combinational logic circuit can be constructed to implement F, by
appropriately connecting input signals and logic gates:

– Circuit input signals  from function variables (A, B, C)

– Circuit output signal  function output (F)

– Logic gates  from logic operations

2023/7/13 PJF - 11Boolean Algebra

A

B

C

F

Combinational Logic Circuit
from Logic Function (cont.)

• In order to design a cost-effective
and efficient circuit, we must
minimize the circuit’s size (area) and
propagation delay (time required for
an input signal change to be
observed at the output line)

• Observe the truth table of F=A’ + B•C’
+ A’•B’ and G=A’ + B•C’

• Truth tables for F and G are identical
 same function

• Use G to implement the logic circuit
(less components)

A B C F G

0 0 0 1 1

0 0 1 1 1

0 1 0 1 1

0 1 1 1 1

1 0 0 0 0

1 0 1 0 0

1 1 0 1 1

1 1 1 0 0

2023/7/13 PJF - 12Boolean Algebra

Combinational Logic Circuit
from Logic Function (cont.)

2023/7/13 Boolean Algebra PJF - 13

A

B

C

F

A
B

C

G

Boolean Algebra

• VERY nice machinery used to manipulate
(simplify) Boolean functions

• George Boole (1815-1864): “An investigation
of the laws of thought”

• Terminology:

– Literal: A variable or its complement

– Product term: literals connected by •

– Sum term: literals connected by +

2023/7/13 Boolean Algebra PJF - 14

Boolean Algebra Properties

Let X: boolean variable, 0,1: constants

1. X + 0 = X -- Zero Axiom

2. X • 1 = X -- Unit Axiom

3. X + 1 = 1 -- Unit Property

4. X • 0 = 0 -- Zero Property

2023/7/13 Boolean Algebra PJF - 15

Boolean Algebra Properties (cont.)

Let X: boolean variable, 0,1: constants

5. X + X = X -- Idepotence

6. X • X = X -- Idepotence

7. X + X’ = 1 -- Complement

8. X • X’ = 0 -- Complement

9. (X’)’ = X -- Involution

2023/7/13 Boolean Algebra PJF - 16

Duality

• The dual of an expression is obtained by exchanging
(• and +), and (1 and 0) in it, provided that the
precedence of operations is not changed.

• Cannot exchange x with x’
• Example:

– Find H(x,y,z), the dual of F(x,y,z) = x’yz’ + x’y’z
– H = (x’+y+z’) (x’+y’+ z)

2023/7/13 Boolean Algebra PJF - 17

Duality (cont’d)

2023/7/13 Boolean Algebra PJF - 18

With respect to duality, Identities 1 – 8
have the following relationship:

1. X + 0 = X 2. X • 1 = X (dual of 1)

3. X + 1 = 1 4. X • 0 = 0 (dual of 3)

5. X + X = X 6. X • X = X (dual of 5)

7. X + X’ = 1 8. X • X’ = 0 (dual of 8)

More Boolean Algebra Properties

Let X,Y, and Z: boolean variables

10. X + Y = Y + X 11. X • Y = Y • X -- Commutative

12. X + (Y+Z) = (X+Y) + Z 13. X•(Y•Z) = (X•Y)•Z -- Associative

14. X•(Y+Z) = X•Y + X•Z 15. X+(Y•Z) = (X+Y) • (X+Z)
-- Distributive

16. (X + Y)’ = X’ • Y’ 17. (X • Y)’ = X’ + Y’ -- DeMorgan’s

In general,
(X1 + X2 + … + Xn)’ = X1’•X2’ • … •Xn’, and
(X1•X2•… •Xn)’ = X1’ + X2’ + … + Xn’

2023/7/13 Boolean Algebra PJF - 19

Absorption Property

1. x + x•y = x

2. x•(x+y) = x (dual)

• Proof:
x + x•y = x•1 + x•y

= x•(1+y)
= x•1
= x

QED (2 true by duality, why?)

2023/7/13 Boolean Algebra PJF - 20

Power of Duality

1. x + x•y = x is true, so (x + x•y)’=x’

2. (x + x•y)’=x’•(x’+y’)

3. x’•(x’+y’) =x’

4. Let X=x’, Y=y’

5. X•(X+Y) =X, which is the dual of x + x•y = x.

6. The above process can be applied to any formula. So
if a formula is valid, then its dual must also be valid.

7. Proving one formula also proves its dual.

2023/7/13 Boolean Algebra PJF - 21

Consensus Theorem

1.xy + x’z + yz = xy + x’z

2.(x+y)•(x’+z)•(y+z) = (x+y)•(x’+z) -- (dual)

• Proof:
xy + x’z + yz = xy + x’z + (x+x’)yz

= xy + x’z + xyz + x’yz
= (xy + xyz) + (x’z + x’zy)
= xy + x’z

QED (2 true by duality).

2023/7/13 Boolean Algebra PJF - 22

Truth Tables (revisited)

• Enumerates all possible
combinations of variable values
and the corresponding function
value

• Truth tables for some arbitrary
functions
F1(x,y,z), F2(x,y,z), and F3(x,y,z) are
shown to the right.

2023/7/13 Boolean Algebra PJF - 23

x y z F1 F2 F3

0 0 0 0 1 1

0 0 1 0 0 1

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 0 1 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 1 1 0 1

Truth Tables (cont.)

• Truth table: a unique representation of a Boolean
function

• If two functions have identical truth tables, the
functions are equivalent (and vice-versa).

• Truth tables can be used to prove equality theorems.

• However, the size of a truth table grows
exponentially with the number of variables involved,
hence unwieldy. This motivates the use of Boolean
Algebra.

2023/7/13 Boolean Algebra PJF - 24

Boolean expressions-NOT unique

• Unlike truth tables, expressions
representing a Boolean function are NOT
unique.

• Example:
– F(x,y,z) = x’•y’•z’ + x’•y•z’ + x•y•z’

– G(x,y,z) = x’•y’•z’ + y•z’

• The corresponding truth tables for F() and
G() are to the right. They are identical.

• Thus, F() = G()

2023/7/13 Boolean Algebra PJF - 25

x y z F G

0 0 0 1 1

0 0 1 0 0

0 1 0 1 1

0 1 1 0 0

1 0 0 0 0

1 0 1 0 0

1 1 0 1 1

1 1 1 0 0

Algebraic Manipulation

• Boolean algebra is a useful tool for simplifying
digital circuits.

• Why do it? Simpler can mean cheaper, smaller,
faster.

• Example: Simplify F = x’yz + x’yz’ + xz.
F = x’yz + x’yz’ + xz

= x’y(z+z’) + xz
= x’y•1 + xz
= x’y + xz

2023/7/13 Boolean Algebra PJF - 26

Algebraic Manipulation (cont.)

• Example: Prove
x’y’z’ + x’yz’ + xyz’ = x’z’ + yz’

• Proof:
x’y’z’+ x’yz’+ xyz’

= x’y’z’ + x’yz’ + x’yz’ + xyz’
= x’z’(y’+y) + yz’(x’+x)
= x’z’•1 + yz’•1
= x’z’ + yz’

QED.

2023/7/13 Boolean Algebra PJF - 27

Complement of a Function

• The complement of a function is derived by
interchanging (• and +), and (1 and 0), and
complementing each variable.

• Otherwise, interchange 1s to 0s in the truth
table column showing F.

• The complement of a function IS NOT THE
SAME as the dual of a function.

2023/7/13 Boolean Algebra PJF - 28

Complementation: Example

• Find G(x,y,z), the complement of
F(x,y,z) = xy’z’ + x’yz

• G = F’ = (xy’z’ + x’yz)’
= (xy’z’)’ • (x’yz)’ DeMorgan

= (x’+y+z) • (x+y’+z’) DeMorgan again

• Note: The complement of a function can also be
derived by finding the function’s dual, and then
complementing all of the literals

2023/7/13 Boolean Algebra PJF - 29

Canonical and Standard Forms

• We need to consider formal techniques for the
simplification of Boolean functions.
– Identical functions will have exactly the same

canonical form.

– Minterms and Maxterms

– Sum-of-Minterms and Product-of- Maxterms

– Product and Sum terms

– Sum-of-Products (SOP) and Product-of-Sums (POS)

2023/7/13 Boolean Algebra PJF - 30

Definitions

• Literal: A variable or its complement

• Product term: literals connected by •

• Sum term: literals connected by +

• Minterm: a product term in which all the variables
appear exactly once, either complemented or
uncomplemented

• Maxterm: a sum term in which all the variables
appear exactly once, either complemented or
uncomplemented

2023/7/13 Boolean Algebra PJF - 31

Minterm

• Represents exactly one combination in the truth table.

• Denoted by mj, where j is the decimal equivalent of
the minterm’s corresponding binary combination (bj).

• A variable in mj is complemented if its value in bj is 0,
otherwise is uncomplemented.

• Example: Assume 3 variables (A,B,C), and j=3. Then, bj

= 011 and its corresponding minterm is denoted by mj

= A’BC

2023/7/13 Boolean Algebra PJF - 32

Maxterm

• Represents exactly one combination in the truth table.

• Denoted by Mj, where j is the decimal equivalent of
the maxterm’s corresponding binary combination (bj).

• A variable in Mj is complemented if its value in bj is 1,
otherwise is uncomplemented.

• Example: Assume 3 variables (A,B,C), and j=3. Then, bj

= 011 and its corresponding maxterm is denoted by
Mj = A+B’+C’

2023/7/13 Boolean Algebra PJF - 33

Truth Table notation for Minterms and
Maxterms

• Minterms and
Maxterms are easy
to denote using a
truth table.

• Example:
Assume 3 variables
x,y,z
(order is fixed)

2023/7/13 Boolean Algebra PJF - 34

x y z Minterm Maxterm

0 0 0 x’y’z’ = m0 x+y+z = M0

0 0 1 x’y’z = m1 x+y+z’ = M1

0 1 0 x’yz’ = m2 x+y’+z = M2

0 1 1 x’yz = m3 x+y’+z’= M3

1 0 0 xy’z’ = m4 x’+y+z = M4

1 0 1 xy’z = m5 x’+y+z’ = M5

1 1 0 xyz’ = m6 x’+y’+z = M6

1 1 1 xyz = m7 x’+y’+z’ = M7

Canonical Forms (Unique)

• Any Boolean function F() can be expressed as a
unique sum of minterms and a unique product
of maxterms (under a fixed variable ordering).

• In other words, every function F() has two
canonical forms:
– Canonical Sum-Of-Products (sum of minterms)

– Canonical Product-Of-Sums (product of
maxterms)

2023/7/13 Boolean Algebra PJF - 35

Canonical Forms (cont.)

• Canonical Sum-Of-Products:
The minterms included are those mj such that
F() = 1 in row j of the truth table for F().

• Canonical Product-Of-Sums:
The maxterms included are those Mj such that
F() = 0 in row j of the truth table for F().

2023/7/13 Boolean Algebra PJF - 36

Example

• Truth table for f1(a,b,c) at right

• The canonical sum-of-products form for f1

is
f1(a,b,c) = m1 + m2 + m4 + m6

= a’b’c + a’bc’ + ab’c’ + abc’

• The canonical product-of-sums form for f1 is
f1(a,b,c) = M0 • M3 • M5 • M7

= (a+b+c)•(a+b’+c’)•
(a’+b+c’)•(a’+b’+c’).

• Observe that: mj = Mj’

2023/7/13 Boolean Algebra PJF - 37

a b c f1

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Shorthand: ∑ and ∏

• f1(a,b,c) = ∑ m(1,2,4,6), where ∑ indicates that this is
a sum-of-products form, and m(1,2,4,6) indicates
that the minterms to be included are m1, m2, m4, and
m6.

• f1(a,b,c) = ∏ M(0,3,5,7), where ∏ indicates that this
is a product-of-sums form, and M(0,3,5,7) indicates
that the maxterms to be included are M0, M3, M5,
and M7.

• Since mj = Mj’ for any j,
∑ m(1,2,4,6) = ∏ M(0,3,5,7) = f1(a,b,c)

2023/7/13 Boolean Algebra PJF - 38

Conversion Between Canonical Forms

• Replace ∑ with ∏ (or vice versa) and replace those j’s that

appeared in the original form with those that do not.

• Example:
f1(a,b,c) = a’b’c + a’bc’ + ab’c’ + abc’

= m1 + m2 + m4 + m6

= ∑(1,2,4,6)

= ∏(0,3,5,7)

= (a+b+c)•(a+b’+c’)•(a’+b+c’)•(a’+b’+c’)

2023/7/13 Boolean Algebra PJF - 39

Standard Forms (NOT Unique)

• Standard forms are “like” canonical forms,
except that not all variables need appear in
the individual product (SOP) or sum (POS)
terms.

• Example:
f1(a,b,c) = a’b’c + bc’ + ac’
is a standard sum-of-products form

• f1(a,b,c) = (a+b+c)•(b’+c’)•(a’+c’)
is a standard product-of-sums form.

2023/7/13 Boolean Algebra PJF - 40

Conversion of SOP from standard to
canonical form

• Expand non-canonical terms by inserting
equivalent of 1 in each missing variable x:
(x + x’) = 1

• Remove duplicate minterms

• f1(a,b,c) = a’b’c + bc’ + ac’
= a’b’c + (a+a’)bc’ + a(b+b’)c’
= a’b’c + abc’ + a’bc’ + abc’ + ab’c’
= a’b’c + abc’ + a’bc + ab’c’

2023/7/13 Boolean Algebra PJF - 41

Conversion of POS from standard to
canonical form

• Expand noncanonical terms by adding 0 in terms of
missing variables (e.g., xx’ = 0) and using the
distributive law

• Remove duplicate maxterms

• f1(a,b,c) = (a+b+c)•(b’+c’)•(a’+c’)
= (a+b+c)•(aa’+b’+c’)•(a’+bb’+c’)
= (a+b+c)•(a+b’+c’)•(a’+b’+c’)•

(a’+b+c’)•(a’+b’+c’)
= (a+b+c)•(a+b’+c’)•(a’+b’+c’)•(a’+b+c’)

2023/7/13 Boolean Algebra PJF - 42

Karnaugh Maps

• Karnaugh maps (K-maps) are graphical
representations of boolean functions.

• One map cell corresponds to a row in the
truth table.

• Also, one map cell corresponds to a minterm
or a maxterm in the boolean expression

• Multiple-cell areas of the map correspond to
standard terms.

2023/7/13 Boolean Algebra PJF - 43

Two-Variable Map

2023/7/13 Boolean Algebra PJF - 44

m3m21

m1m00

10x1

x2

0 1

2 3

NOTE: ordering of variables is IMPORTANT
for f(x1,x2), x1 is the row, x2 is the column.

Cell 0 represents x1’x2’; Cell 1 represents
x1’x2; etc. If a minterm is present in the
function, then a 1 is placed in the
corresponding cell.

m3m11

m2m00

10x2

x1

0 2

1 3

OR

Two-Variable Map (cont.)

• Any two adjacent cells in the map differ by
ONLY one variable, which appears
complemented in one cell and
uncomplemented in the other.

• Example:
m0 (=x1’x2’) is adjacent to m1 (=x1’x2) and m2

(=x1x2’) but NOT m3 (=x1x2)

2023/7/13 Boolean Algebra PJF - 45

2-Variable Map -- Example

• f(x1,x2) = x1’x2’+ x1’x2 + x1x2’
= m0 + m1 + m2
= x1’ + x2’

• 1s placed in K-map for specified
minterms m0, m1, m2

• Grouping (ORing) of 1s allows
simplification

• What (simpler) function is
represented by each dashed
rectangle?
– x1’ = m0 + m1

– x2’ = m0 + m2

• Note m0 covered twice

2023/7/13 Boolean Algebra PJF - 46

x1 0 1

0 1 1

1 1 0

x2

0 1

2 3

Minimization as SOP using K-map

• Enter 1s in the K-map for each product term in
the function

• Group adjacent K-map cells containing 1s to
obtain a product with fewer variables. Group
size must be in power of 2 (2, 4, 8, …)

• Handle “boundary wrap” for K-maps of 3 or
more variables.

• Realize that answer may not be unique

2023/7/13 Boolean Algebra PJF - 47

Three-Variable Map

2023/7/13 Boolean Algebra PJF - 48

m6m7m5m41

m2m3m1m00

10110100

yz

x
0 1 3 2

4 5 7 6

-Note: variable ordering is (x,y,z); yz specifies
column, x specifies row.
-Each cell is adjacent to three other cells (left or
right or top or bottom or edge wrap)

Three-Variable Map (cont.)

2023/7/13 Boolean Algebra PJF - 49

The types of structures
that are either minterms or
are generated by repeated
application of the
minimization theorem on a
three variable map are
shown at right.
Groups of 1, 2, 4, 8 are
possible.

minterm

group of 2 terms

group of 4 terms

Simplification

• Enter minterms of the Boolean function into
the map, then group terms

• Example: f(a,b,c) = a’c + abc + bc’

• Result: f(a,b,c) = a’c+ b

2023/7/13 Boolean Algebra PJF - 50

1 1 1

1 1

abc

1 1 1

1 1

More Examples

• f1(x, y, z) = ∑ m(2,3,5,7)

• f2(x, y, z) = ∑ m (0,1,2,3,6)

2023/7/13 Boolean Algebra PJF - 51

 f1(x, y, z) = x’y + xz

f2(x, y, z) = x’+yz’

yz
X 00 01 11 10

0 1 1
1 1 1

1 1 1 1

1

Four-Variable Maps

• Top cells are adjacent to bottom cells. Left-edge cells
are adjacent to right-edge cells.

• Note variable ordering (WXYZ).

2023/7/13 PJF - 52Boolean Algebra

m10m11m9m810

m14m15m13m1211

m6m7m5m401

m2m3m1m000

10110100WX

YZ

Four-variable Map Simplification

• One square represents a minterm of 4 literals.

• A rectangle of 2 adjacent squares represents a
product term of 3 literals.

• A rectangle of 4 squares represents a product term
of 2 literals.

• A rectangle of 8 squares represents a product term
of 1 literal.

• A rectangle of 16 squares produces a function that is
equal to logic 1.

2023/7/13 Boolean Algebra PJF - 53

Example

• Simplify the following Boolean function (A,B,C,D) =
∑m(0,1,2,4,5,7,8,9,10,12,13).

• First put the function g() into the map, and then
group as many 1s as possible.

2023/7/13 Boolean Algebra PJF - 54

cd
ab

111

11

111

111

g(A,B,C,D) = c’+b’d’+a’bd

111

11

111

111

Don't Care Conditions

• There may be a combination of input values which

– will never occur

– if they do occur, the output is of no concern.

• The function value for such combinations is called a don't
care.

• They are denoted with x or –. Each x may be arbitrarily
assigned the value 0 or 1 in an implementation.

• Don’t cares can be used to further simplify a function

2023/7/13 Boolean Algebra PJF - 55

Minimization using Don’t Cares

• Treat don't cares as if they are 1s to generate
PIs.

• Delete PI's that cover only don't care
minterms.

• Treat the covering of remaining don't care
minterms as optional in the selection process
(i.e. they may be, but need not be, covered).

2023/7/13 Boolean Algebra PJF - 56

Example

• Simplify the function f(a,b,c,d)
whose K-map is shown at the
right.

• f = a’c’d+ab’+cd’+a’bc’

or

• f = a’c’d+ab’+cd’+a’bd’

2023/7/13 Boolean Algebra PJF - 57

xx11

xx00

1011

1010

xx11

xx00

1011

1010

0 1 0 1

1 1 0 1

0 0 x x

1 1 x x

ab
cd

00

01

11

10

00 01 11 10

Another Example

• Simplify the function
g(a,b,c,d) whose K-map is
shown at right.

• g = a’c’+ ab
or

• g = a’c’+b’d

2023/7/13 Boolean Algebra PJF - 58

x 1 0 0

1 x 0 x

1 x x 1

0 x x 0

x 1 0 0

1 x 0 x

1 x x 1

0 x x 0

x 1 0 0

1 x 0 x

1 x x 1

0 x x 0

ab
cd

Algorithmic minimization

• What do we do for functions with more
variables?

• You can “code up” a minimizer (Computer-
Aided Design, CAD)

– Quine-McCluskey algorithm

– Iterated consensus

• We won’t discuss these techniques here

2023/7/13 Boolean Algebra PJF - 59

More Logic Gates

• NAND and NOR Gates
– NAND and NOR circuits

– Two-level Implementations

– Multilevel Implementations

• Exclusive-OR (XOR) Gates
– Odd Function

– Parity Generation and Checking

2023/7/13 Boolean Algebra PJF - 60

More Logic Gates
• We can construct any combinational circuit with

AND, OR, and NOT gates

• Additional logic gates are used for practical reasons

2023/7/13 PJF - 61Boolean Algebra

BUFFER, NAND and NOR

2023/7/13 PJF - 62Boolean Algebra

NAND Gate

• Known as a “universal” gate because ANY
digital circuit can be implemented with NAND
gates alone.

• To prove the above, it suffices to show that
AND, OR, and NOT can be implemented using
NAND gates only.

2023/7/13 Boolean Algebra PJF - 63

NAND Gate Emulation

2023/7/13 Boolean Algebra PJF - 64

X

X

F = (X•X)’
= X’+X’
= X’

X
Y

Y

F = ((X•Y)’)’
= (X’+Y’)’
= X’’•Y’’
= X•Y

F = (X’•Y’)’
= X’’+Y’’
= X+Y

X

X

F = X’

X
Y

Y

F X•Y

F = X+Y

NAND Circuits
• To easily derive a NAND implementation of a

boolean function:

– Find a simplified SOP

– SOP is an AND-OR circuit

– Change AND-OR circuit to a NAND circuit

– Use the alternative symbols below

2023/7/13 PJF - 65Boolean Algebra

AND-OR (SOP) Emulation
Using NANDs

2023/7/13 Boolean Algebra PJF - 66

a) Original SOP

b) Implementation with NANDs

Two-level implementations

AND-OR (SOP) Emulation
Using NANDs (cont.)

2023/7/13 Boolean Algebra PJF - 67

Verify:

(a) G = WXY + YZ

(b) G = ((WXY)’ • (YZ)’)’
= (WXY)’’ + (YZ)’’ = WXY + YZ

SOP with NAND

(a) Original SOP

(b) Double inversion and grouping

(c) Replacement with NANDs

2023/7/13 Boolean Algebra PJF - 68

AND-NOT

NOT-OR

Two-Level NAND Gate
Implementation - Example

F (X,Y,Z) = m(0,6)

1. Express F in SOP form:
F = X’Y’Z’ + XYZ’

2. Obtain the AND-OR implementation for F.

3. Add bubbles and inverters to transform AND-
OR to NAND-NAND gates.

2023/7/13 Boolean Algebra PJF - 69

Example (cont.)

Two-level implementation with NANDs

F = X’Y’Z’ + XYZ’
2023/7/13 Boolean Algebra PJF - 70

Multilevel NAND Circuits
Starting from a multilevel circuit:

1. Convert all AND gates to NAND gates with AND-NOT
graphic symbols.

2. Convert all OR gates to NAND gates with NOT-OR
graphic symbols.

3. Check all the bubbles in the diagram. For every
bubble that is not counteracted by another bubble
along the same line, insert a NOT gate or
complement the input literal from its original
appearance.

2023/7/13 Boolean Algebra PJF - 71

Example

Use NAND gates
and NOT gates to
implement
Z=E’F(AB+C’+D’)+GH

AB

AB+C’+D’

E’F(AB+C’+D’)

E’F(AB+C’+D’)+GH

2023/7/13 Boolean Algebra PJF - 72

Yet Another Example!

2023/7/13 Boolean Algebra PJF - 73

NOR Gate

• Also a “universal” gate because ANY digital
circuit can be implemented with NOR gates
alone.

• This can be similarly proven as with the NAND
gate.

2023/7/13 PJF - 74Boolean Algebra

NOR Circuits

• To easily derive a NOR implementation of a boolean
function:

– Find a simplified POS

– POS is an OR-AND circuit

– Change OR-AND circuit to a NOR circuit

– Use the alternative symbols below

2023/7/13 PJF - 75Boolean Algebra

Two-Level NOR Gate
Implementation - Example

F(X,Y,Z) = m(0,6)

1. Express F’ in SOP form:
1. F’ = m(1,2,3,4,5,7)

= X’Y’Z + X’YZ’ + X’YZ + XY’Z’ + XY’Z + XYZ

2. F’ = XY’ + X’Y + Z

2. Take the complement of F’ to get F in the POS form:
F = (F’)' = (X'+Y)(X+Y')Z'

3. Obtain the OR-AND implementation for F.

4. Add bubbles and inverters to transform OR-AND
implementation to NOR-NOR implementation.

2023/7/13 Boolean Algebra PJF - 76

Example (cont.)

Two-level implementation with NORs

F = (F’)' = (X'+Y)(X+Y')Z'

2023/7/13 Boolean Algebra PJF - 77

XOR and XNOR

X Y F = XY

0 0 0

0 1 1

1 0 1

1 1 0

2023/7/13 PJF - 78Boolean Algebra

Y

F

XOR: “not-equal” gate

X Y F = XY

0 0 1

0 1 0

1 0 0

1 1 1

X

Y

F

XNOR: “equal” gate

X

Exclusive-OR (XOR) Function

• XOR (also ) : the “not-equal” function

• XOR(X,Y) = X  Y = X’Y + XY’

• Identities:
– X  0 = X

– X  1 = X’

– X  X = 0

– X  X’ = 1

• Properties:
– X  Y = Y  X

– (X  Y)  W = X  (Y  W)

2023/7/13 Boolean Algebra PJF - 79

XOR function implementation

• XOR(a,b) = ab’ + a’b

• Straightforward: 5 gates

– 2 inverters, two 2-input ANDs, one 2-input OR

– 2 inverters & 3 2-input NANDs

• Nonstraightforward:

– 4 NAND gates

2023/7/13 PJF - 80Boolean Algebra

XOR circuit with 4 NANDs

2023/7/13 PJF - 81Boolean Algebra

