DIGITAL ELECTRONICS

Prof. Rasmita Lenka

Overview

- Binary logic and Gates
- Boolean Algebra
 - Basic Properties
 - Algebraic Manipulation
- Standard and Canonical Forms
 - Minterms and Maxterms (Canonical forms)
 - SOP and POS (Standard forms)
- Karnaugh Maps (K-Maps)
 - 2, 3, 4, and 5 variable maps
 - Simplification using K-Maps
- K-Map Manipulation
 - Implicants: Prime, Essential
 - Don't Cares
- More Logic Gates

PJF - 2

Binary Logic

- Deals with binary variables that take 2 discrete values (0 and 1), and with logic operations
- Three basic logic operations:
 - AND, OR, NOT
- Binary/logic variables are typically represented as letters: A,B,C,...,X,Y,Z

Binary Logic Function

F(vars) = expression

Operators (+, *, ')

set of binary
variables

Constants (0, 1)

Groupings (parenthesis)

Example:
$$F(a,b) = a' \cdot b + b'$$

 $G(x,y,z) = x \cdot (y+z')$

Basic Logic Operators

- AND
- OR
- NOT

- F(a,b) = a•b, F is 1 <u>if and only if</u> a=b=1
- G(a,b) = a+b, G is 1 if either a=1 or b=1
- H(a) = a', H is 1 if <math>a=0

Basic Logic Operators (cont.)

 1-bit logic AND resembles binary multiplication:

$$0 \bullet 0 = 0, \qquad 0 \bullet 1 = 0,$$

 $1 \bullet 0 = 0, \qquad 1 \bullet 1 = 1$

 1-bit logic OR resembles binary addition, except for one operation:

$$0 + 0 = 0$$
, $0 + 1 = 1$,
 $1 + 0 = 1$, $1 + 1 = 1 (\neq 10_2)$

Truth Tables for logic operators

Truth table: tabular form that <u>uniguely</u> represents the relationship between the input variables of a function and its output

2-Input AND

A	В	F=A·B
0	0	0
0	1	0
1	0	0
1	1	1

2-Input OR

A	В	F=A+B
0	0	0
0	1	1
1	0	1
1	1	1

A	F=A'
0	1
1	0

Truth Tables (cont.)

Q: Let a function F() depend on n variables.
 How many rows are there in the truth table of F()?

■ A: 2ⁿ rows, since there are 2ⁿ possible binary patterns/combinations for the n variables

Logic Gates

 Logic gates are abstractions of electronic circuit components that operate on one or more input signals to produce an output signal.

Timing Diagram

Combinational Logic Circuit from Logic Function

- Consider function F = A' + B C' + A' B'
- A combinational logic circuit can be constructed to implement F, by appropriately connecting input signals and logic gates:
 - Circuit input signals → from function variables (A, B, C)
 - Circuit output signal → function output (F)
 - Logic gates → from logic operations

Combinational Logic Circuit from Logic Function (cont.)

- In order to design a cost-effective and efficient circuit, we must minimize the circuit's size (area) and propagation delay (time required for an input signal change to be observed at the output line)
- Observe the truth table of F=A' + B•C'
 + A'•B' and G=A' + B•C'
- Truth tables for F and G are identical
 → same function
- Use G to implement the logic circuit (less components)

A	В	C	۴	G
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

Combinational Logic Circuit from Logic Function (cont.)

Boolean Algebra

- VERY nice machinery used to manipulate (simplify) Boolean functions
- George Boole (1815-1864): "An investigation of the laws of thought"
- Terminology:
 - Literal: A variable or its complement
 - Product term: literals connected by •
 - Sum term: literals connected by +

Boolean Algebra Properties

Let X: boolean variable, 0,1: constants

- 1. X + 0 = X -- Zero Axiom
- 2. $X \bullet 1 = X$ -- Unit Axiom
- 3. X + 1 = 1 -- Unit Property
- 4. $X \bullet 0 = 0$ -- Zero Property

Boolean Algebra Properties (cont.)

Let X: boolean variable, 0,1: constants

- 5. X + X = X -- Idepotence
- 6. $X \bullet X = X$ -- Idepotence
- 7. X + X' = 1 -- Complement
- 8. $X \bullet X' = 0$ -- Complement
- 9. (X')' = X -- Involution

Duality

- The dual of an expression is obtained by exchanging (• and +), and (1 and 0) in it, provided that the precedence of operations is not changed.
- Cannot exchange x with x'
- Example:
 - Find H(x,y,z), the dual of F(x,y,z) = x'yz' + x'y'z
 - H = (x'+y+z')(x'+y'+z)

Duality (cont'd)

With respect to duality, Identities 1 - 8 have the following relationship:

1.
$$X + 0 = X$$
 2. $X \cdot 1 = X$ (dual of 1)

3.
$$X + 1 = 1$$
 4. $X \cdot 0 = 0$ (dual of 3)

$$5. X + X = X$$
 $6. X \cdot X = X$ (dual of 5)

7.
$$X + X' = 1$$
 8. $X \cdot X' = 0$ (dual of 8)

More Boolean Algebra Properties

Let X,Y, and Z: boolean variables

Absorption Property

```
1. \quad x + x \bullet y = x
```

2.
$$x \cdot (x+y) = x \text{ (dual)}$$

Proof:

$$x + x \bullet y = x \bullet 1 + x \bullet y$$

$$= x \bullet (1+y)$$

$$= x \bullet 1$$

$$= x$$

QED (2 true by duality, why?)

Power of Duality

- 1. $x + x \cdot y = x$ is true, so $(x + x \cdot y)' = x'$
- 2. $(x + x \bullet y)' = x' \bullet (x' + y')$
- 3. $x' \bullet (x'+y') = x'$
- 4. Let X=x', Y=y'
- 5. $X \bullet (X+Y) = X$, which is the dual of $x + x \bullet y = x$.
- The above process can be applied to any formula. So if a formula is valid, then its dual must also be valid.
- 7. Proving one formula also proves its dual.

Consensus Theorem

1.
$$xy + x'z + yz = xy + x'z$$

2. $(x+y) \bullet (x'+z) \bullet (y+z) = (x+y) \bullet (x'+z)$ -- (dual)

Proof:

$$xy + x'z + yz = xy + x'z + (x+x')yz$$

= $xy + x'z + xyz + x'yz$
= $(xy + xyz) + (x'z + x'zy)$
= $xy + x'z$

QED (2 true by duality).

Truth Tables (revisited)

- Enumerates all possible combinations of variable values and the corresponding function value
- Truth tables for some arbitrary functions
 F₁(x,y,z), F₂(x,y,z), and F₃(x,y,z) are shown to the right.

X	Y	Z	F ₁	F ₂	F ₃
0	0	0	0	1	1
0	0	1	0	0	1
0	1	0	0	0	1
0	1	1	0	1	1
1	0	0	0	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	1	0	1

Truth Tables (cont.)

- Truth table: a <u>unique</u> representation of a Boolean function
- If two functions have identical truth tables, the functions are equivalent (and vice-versa).
- Truth tables can be used to prove equality theorems.
- However, the size of a truth table grows
 <u>exponentially</u> with the number of variables involved,
 hence unwieldy. This motivates the use of Boolean
 Algebra.

Boolean expressions-NOT unique

- Unlike truth tables, expressions representing a Boolean function are NOT unique.
- Example:

$$- F(x,y,z) = x' \bullet y' \bullet z' + x' \bullet y \bullet z' + x \bullet y \bullet z'$$

$$- G(x,y,z) = x' \bullet y' \bullet z' + y \bullet z'$$

- The corresponding truth tables for F() and G() are to the right. They are identical.
- Thus, F() = G()

×	Y	Z	۴	G
0	0	0	1	1
0	0	1	0	0
0	1	0	1	1
0	1	1	0	0
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

Algebraic Manipulation

- Boolean algebra is a useful tool for simplifying digital circuits.
- Why do it? Simpler can mean cheaper, smaller, faster.
- Example: Simplify F = x'yz + x'yz' + xz.

```
F = x'yz + x'yz' + xz
= x'y(z+z') + xz
= x'y \cdot 1 + xz
= x'y + xz
```

Algebraic Manipulation (cont.)

• Example: Prove x'y'z' + x'yz' + xyz' = x'z' + yz'

Proof:

$$x'y'z' + x'yz' + xyz'$$

= $x'y'z' + x'yz' + x'yz' + xyz'$
= $x'z'(y'+y) + yz'(x'+x)$
= $x'z' \cdot 1 + yz' \cdot 1$
= $x'z' + yz'$

QED.

Complement of a Function

- The complement of a function is derived by interchanging (• and +), and (1 and 0), and complementing each variable.
- Otherwise, interchange 1s to 0s in the truth table column showing F.
- The complement of a function IS NOT THE SAME as the dual of a function.

Complementation: Example

• Find G(x,y,z), the complement of F(x,y,z) = xy'z' + x'yz

• G = F' =
$$(xy'z' + x'yz)'$$

= $(xy'z')'$ • $(x'yz)'$ DeMorgan
= $(x'+y+z)$ • $(x+y'+z')$ DeMorgan again

 Note: The complement of a function can also be derived by finding the function's *dual*, and then complementing all of the literals

Canonical and Standard Forms

- We need to consider formal techniques for the simplification of Boolean functions.
 - Identical functions will have exactly the same canonical form.
 - Minterms and Maxterms
 - Sum-of-Minterms and Product-of- Maxterms
 - Product and Sum terms
 - Sum-of-Products (SOP) and Product-of-Sums (POS)

Definitions

- Literal: A variable or its complement
- Product term: literals connected by
- Sum term: literals connected by +
- Minterm: a product term in which all the variables appear exactly once, either complemented or uncomplemented
- Maxterm: a sum term in which all the variables appear exactly once, either complemented or uncomplemented

Minterm

- Represents exactly one combination in the truth table.
- Denoted by m_j , where j is the decimal equivalent of the minterm's corresponding binary combination (b_i) .
- A variable in m_j is complemented if its value in b_j is 0, otherwise is uncomplemented.
- Example: Assume 3 variables (A,B,C), and j=3. Then, b_j = 011 and its corresponding minterm is denoted by m_j = A'BC

Maxterm

- Represents exactly one combination in the truth table.
- Denoted by M_j , where j is the decimal equivalent of the maxterm's corresponding binary combination (b_i) .
- A variable in M_j is complemented if its value in b_j is 1, otherwise is uncomplemented.
- Example: Assume 3 variables (A,B,C), and j=3. Then, b_j = 011 and its corresponding maxterm is denoted by $M_j = A+B'+C'$

Truth Table notation for Minterms and Maxterms

- Minterms and Maxterms are easy to denote using a truth table.
- Example:
 Assume 3 variable:
 X,y,z
 (order is fixed)

	X	У	z	Minterm	Maxterm
X	0	0	0	$x'y'z' = m_0$	x+y+z = M ₀
	0	0	1	$x'y'z = m_1$	x+y+z' = M ₁
	0	1	0	x'yz' = m ₂	x+y'+z = M ₂
	0	1	1	x'yz = m ₃	x+y'+z'= M ₃
\$	51	0	0	xy'z' = m ₄	$x'+y+z=M_4$
	1	0	1	xy'z = m ₅	$x'+y+z'=M_5$
	1	1	0	xyz' = m ₆	$x'+y'+z = M_6$
	1	1	1	xyz = m ₇	x'+y'+z' = M ₇

Canonical Forms (Unique)

- Any Boolean function F() can be expressed as a unique sum of minterms and a unique product of maxterms (under a fixed variable ordering).
- In other words, every function F() has two canonical forms:
 - Canonical Sum-Of-Products (sum of minterms)
 - Canonical Product-Of-Sums (product of maxterms)

Canonical Forms (cont.)

- Canonical Sum-Of-Products:
 The minterms included are those m_j such that
 F() = 1 in row j of the truth table for F().
- Canonical Product-Of-Sums:
 The maxterms included are those M_j such that
 F() = 0 in row j of the truth table for F().

Example

- Truth table for f₁(a,b,c) at right
- The canonical sum-of-products form for f₁ is

$$f_1(a,b,c) = m_1 + m_2 + m_4 + m_6$$

= a'b'c + a'bc' + ab'c' + abc'

• The canonical product-of-sums form for f_1 is $f_1(a,b,c) = M_0 \cdot M_3 \cdot M_5 \cdot M_7$

=
$$(a+b+c) \cdot (a+b'+c') \cdot (a'+b+c') \cdot (a'+b'+c')$$
.

Observe that: m_j = M_j'

a	b	С	f_1
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Shorthand: ∑ and ∏

- $f_1(a,b,c) = \sum m(1,2,4,6)$, where \sum indicates that this is a sum-of-products form, and m(1,2,4,6) indicates that the minterms to be included are m_1 , m_2 , m_4 , and m_6 .
- $f_1(a,b,c) = \prod M(0,3,5,7)$, where \prod indicates that this is a product-of-sums form, and M(0,3,5,7) indicates that the maxterms to be included are M_0 , M_3 , M_5 , and M_7 .
- Since $m_j = M_j'$ for any j, $\sum m(1,2,4,6) = \prod M(0,3,5,7) = f_1(a,b,c)$

Conversion Between Canonical Forms

- Replace \sum with \prod (or *vice versa*) and replace those j's that appeared in the original form with those that do not.
- Example:

```
f_{1}(a,b,c) = a'b'c + a'bc' + ab'c' + abc'
= m_{1} + m_{2} + m_{4} + m_{6}
= \sum (1,2,4,6)
= \prod (0,3,5,7)
= (a+b+c) \cdot (a+b'+c') \cdot (a'+b+c') \cdot (a'+b'+c')
```

Standard Forms (NOT Unique)

- Standard forms are "like" canonical forms, except that not all variables need appear in the individual product (SOP) or sum (POS) terms.
- Example:
 f₁(a,b,c) = a'b'c + bc' + ac'
 is a standard sum-of-products form
- f₁(a,b,c) = (a+b+c) (b'+c') (a'+c')
 is a standard product-of-sums form.

Conversion of SOP from standard to canonical form

- Expand non-canonical terms by inserting equivalent of 1 in each missing variable x: (x + x') = 1
- Remove duplicate minterms
- f₁(a,b,c) = a'b'c + bc' + ac'
 = a'b'c + (a+a')bc' + a(b+b')c'
 = a'b'c + abc' + a'bc' + abc' + ab'c'
 = a'b'c + abc' + a'bc + ab'c'

Conversion of POS from standard to canonical form

- Expand noncanonical terms by adding 0 in terms of missing variables (e.g., xx' = 0) and using the distributive law
- Remove duplicate maxterms

```
• f_1(a,b,c) = (a+b+c) \cdot (b'+c') \cdot (a'+c')

= (a+b+c) \cdot (aa'+b'+c') \cdot (a'+bb'+c')

= (a+b+c) \cdot (a+b'+c') \cdot (a'+b'+c') \cdot

= (a'+b+c') \cdot (a'+b'+c')

= (a+b+c) \cdot (a+b'+c') \cdot (a'+b'+c') \cdot (a'+b+c')
```

Karnaugh Maps

- Karnaugh maps (K-maps) are graphical representations of boolean functions.
- One map cell corresponds to a row in the truth table.
- Also, one map cell corresponds to a minterm or a maxterm in the boolean expression
- Multiple-cell areas of the map correspond to standard terms.

Two-Variable Map

NOTE: ordering of variables is IMPORTANT for $f(x_1,x_2)$, x_1 is the row, x_2 is the column.

Cell 0 represents $x_1'x_2'$; Cell 1 represents $x_1'x_2$; etc. If a minterm is present in the function, then a 1 is placed in the corresponding cell.

Two-Variable Map (cont.)

- Any two adjacent cells in the map differ by ONLY one variable, which appears complemented in one cell and uncomplemented in the other.
- Example:

```
m_0 (=x_1'x_2') is adjacent to m_1 (=x_1'x_2) and m_2 (=x_1x_2') but NOT m_3 (=x_1x_2)
```

2-Variable Map -- Example

•
$$f(x_1,x_2) = x_1'x_2' + x_1'x_2 + x_1x_2'$$

= $m_0 + m_1 + m_2$
= $x_1' + x_2'$

- 1s placed in K-map for specified minterms m₀, m₁, m₂
- Grouping (ORing) of 1s allows simplification
- What (simpler) function is represented by each dashed rectangle?

$$- x_1' = m_0 + m_1$$

 $- x_2' = m_0 + m_2$

Note m₀ covered twice

Minimization as SOP using K-map

- Enter 1s in the K-map for each product term in the function
- Group adjacent K-map cells containing 1s to obtain a product with fewer variables. Group size must be in power of 2 (2, 4, 8, ...)
- Handle "boundary wrap" for K-maps of 3 or more variables.
- Realize that answer may not be unique

Three-Variable Map

- -Note: variable ordering is (x,y,z); yz specifies column, x specifies row.
- -Each cell is adjacent to <u>three</u> other cells (left or right or top or bottom or edge wrap)

Three-Variable Map (cont.)

minterm The types of structures that are either minterms or are generated by repeated application of the minimization theorem on a three variable map are shown at right. Groups of 1, 2, 4, 8 are possible. group of 2 terms group of 4 terms

Simplification

 Enter minterms of the Boolean function into the map, then group terms

• Example: f(a,b,c) = a'c + abc + bc'

• Result: f(a,b,c) = a'c+ b

More Examples

• $f_1(x, y, z) = \sum m(2,3,5,7)$

$$f_1(x, y, z) = x'y + xz$$

• $f_2(x, y, z) = \sum m(0,1,2,3,6)$

$$\blacksquare f_2(x, y, z) = x'+yz'$$

1	1	1	1
			1

Four-Variable Maps

- Top cells are adjacent to bottom cells. Left-edge cells are adjacent to right-edge cells.
- Note variable ordering (WXYZ).

Four-variable Map Simplification

- One square represents a minterm of 4 literals.
- A rectangle of 2 adjacent squares represents a product term of 3 literals.
- A rectangle of 4 squares represents a product term of 2 literals.
- A rectangle of 8 squares represents a product term of 1 literal.
- A rectangle of 16 squares produces a function that is equal to logic 1.

Example

- Simplify the following Boolean function (A,B,C,D) = $\sum m(0,1,2,4,5,7,8,9,10,12,13)$.
- First put the function g() into the map, and then group as many 1s as possible.

Don't Care Conditions

- There may be a combination of input values which
 - will never occur
 - if they do occur, the output is of no concern.
- The function value for such combinations is called a don't care.
- They are denoted with x or —. Each x may be arbitrarily assigned the value 0 or 1 in an implementation.
- Don't cares can be used to further simplify a function

Minimization using Don't Cares

- Treat don't cares as if they are 1s to generate Pls.
- Delete PI's that cover only don't care minterms.
- Treat the covering of remaining don't care minterms as optional in the selection process (i.e. they may be, but need not be, covered).

Example

- Simplify the function f(a,b,c,d) whose K-map is shown at the right.
- f = a'c'd+ab'+cd'+a'bc'
 or
- f = a'c'd+ab'+cd'+a'bd'

co	00	01	11	10
00	0	1	0	1
01	1	1	0	1
11	0	0	×	X
10	1	1	X	×

0	1	0	1
1	1	0	1
0	0	×	×
1	1	×	X

	0	1	0	1	
_	1	1	0	1	
	0	0	X	×	
	1	1	×	X	

Another Example

- Simplify the function g(a,b,c,d) whose K-map is shown at right.
- g = a'c'+ ab or
- g = a'c' + b'd

cd

X	1	0	0
1	×	0	X
1	×	×	1
0	X	×	0

X	1	0	0
1	X	0	×
1	×	X	1
0	×	×	0

X	1	0	0	
1	×	0	X	
1	×	×	1	
0	X	X	0	

Algorithmic minimization

- What do we do for functions with more variables?
- You can "code up" a minimizer (Computer-Aided Design, CAD)
 - Quine-McCluskey algorithm
 - Iterated consensus
- We won't discuss these techniques here

More Logic Gates

- NAND and NOR Gates
 - NAND and NOR circuits
 - Two-level Implementations
 - Multilevel Implementations
- Exclusive-OR (XOR) Gates
 - Odd Function
 - Parity Generation and Checking

More Logic Gates

 We can construct any combinational circuit with AND, OR, and NOT gates

Additional logic gates are used for practical reasons

BUFFER, NAND and NOR

Copyright © 2000 by Prentice Hall, Inc. Digital Design Principles and Practices, 3/e

NAND Gate

- Known as a "universal" gate because ANY digital circuit can be implemented with NAND gates alone.
- To prove the above, it suffices to show that AND, OR, and NOT can be implemented using NAND gates only.

NAND Gate Emulation

NAND Circuits

- To easily derive a NAND implementation of a boolean function:
 - Find a simplified SOP
 - SOP is an AND-OR circuit
 - Change AND-OR circuit to a NAND circuit
 - Use the alternative symbols below

AND-OR (SOP) Emulation Using NANDs

Two-level implementations

- a) Original SOP
- b) Implementation with NANDs

AND-OR (SOP) Emulation Using NANDs (cont.)

Verify:

(a)
$$G = WXY + YZ$$

(b)
$$G = ((WXY)' \cdot (YZ)')'$$

= $(WXY)'' + (YZ)'' = WXY + YZ$

SOP with NAND

Two-Level NAND Gate Implementation - Example

$$F(X,Y,Z) = \Sigma m(0,6)$$

- 1. Express F in SOP form:
 - F = X'Y'Z' + XYZ'
- 2. Obtain the AND-OR implementation for F.
- 3. Add bubbles and inverters to transform AND-OR to NAND-NAND gates.

Example (cont.)

Two-level implementation with NANDs

$$F = X'Y'Z' + XYZ'$$

Multilevel NAND Circuits

Starting from a multilevel circuit:

- 1. Convert all AND gates to NAND gates with AND-NOT graphic symbols.
- 2. Convert all OR gates to NAND gates with NOT-OR graphic symbols.
- 3. Check all the bubbles in the diagram. For every bubble that is not counteracted by another bubble along the same line, insert a NOT gate or complement the input literal from its original appearance.

Example

Use NAND gates and NOT gates to implement Z=E'F(AB+C'+D')+GHAB AB+C'+D' E'F(AB+C'+D')E'F(AB+C'+D')+GH

Yet Another Example!

(a) AND - OR gates

(b) NAND gates

Fig. 2-32 implementing $F = (A \overline{B} + \overline{A}B) E(C + \overline{D})$

NOR Gate

- Also a "universal" gate because ANY digital circuit can be implemented with NOR gates alone.
- This can be similarly proven as with the NAND gate.

NOR Circuits

- To easily derive a NOR implementation of a boolean function:
 - Find a simplified POS
 - POS is an OR-AND circuit
 - Change OR-AND circuit to a NOR circuit
 - Use the alternative symbols below

Fig. 2-34 Two Graphic Symbols for NOR Gate

Two-Level NOR Gate Implementation - Example

$$F(X,Y,Z) = \Sigma m(0,6)$$

- 1. Express F' in SOP form:
 - 1. $F' = \Sigma m(1,2,3,4,5,7)$ = X'Y'Z + X'YZ' + XY'Z' + XY'Z' + XYZ' + XYZ'
 - 2. F' = XY' + X'Y + Z
- 2. Take the complement of F' to get F in the POS form: F = (F')' = (X'+Y)(X+Y')Z'
- Obtain the OR-AND implementation for F.
- 4. Add bubbles and inverters to transform OR-AND implementation to NOR-NOR implementation.

Example (cont.)

Two-level implementation with NORs F = (F')' = (X'+Y)(X+Y')Z'

XOR and XNOR

XOR: "not-equal" gate

X	У	F = X⊕Y
0	0	0
0	1	1
1	0	1
1	1	0

XNOR: "equal" gate

X	У	F = X⊕ Y
0	0	1
0	1	0
1	0	0
1	1	1

Exclusive-OR (XOR) Function

- XOR (also ⊕): the "not-equal" function
- $XOR(X,Y) = X \oplus Y = X'Y + XY'$
- Identities:
 - $-X \oplus 0 = X$
 - $-X \oplus 1 = X'$
 - $X \oplus X = 0$
 - $-X \oplus X' = 1$
- Properties:
 - $X \oplus Y = Y \oplus X$
 - $-(X \oplus Y) \oplus W = X \oplus (Y \oplus W)$

XOR function implementation

- XOR(a,b) = ab' + a'b
- Straightforward: 5 gates
 - 2 inverters, two 2-input ANDs, one 2-input OR
 - 2 inverters & 3 2-input NANDs
- Nonstraightforward:
 - 4 NAND gates

XOR circuit with 4 NANDs

Fig. 2-37 Exclusive-OR Constructed with NAND Gates