DIGITAL ELECTRONICS

Prof. Rasmita Lenka

Overview

Binary logic and Gates

Boolean Algebra

— Basic Properties

— Algebraic Manipulation
Standard and Canonical Forms
— Minterms and Maxterms (Canonical forms)
— SOP and POS (Standard forms)
Karnaugh Maps (K-Maps)

— 2,3, 4, and 5 variable maps

— Simplification using K-Maps
K-Map Manipulation

— Implicants: Prime, Essential

— Don’t Cares

More Logic Gates

Binary Logic

* Deals with binary variables that take 2 discrete
values (0 and 1), and with logic operations

* Three basic logic operations:
— AND, OR, NOT

* Binary/logic variables are typically
represented as letters: A,B,C,...,X,Y,Z

Binary Logic Function

F(vars) = expression

mOperators (+,°, ')

— wVariables
mConstants (0, 1)
mGroupings (parenthesis)

set of binary
variables

Example: F(a,b) =a’eb + b’
G(x,y,z) = xe(y+2’)

Basic Logic Operators

Binary
OR

NOT « Unary

F(a,b) =aeb, Fis1ifandonlyifa=b=1
G(a,b) =a+b, Gis 1 if either a=1 or b=1
H(a) =a’, His1if a=0

Basic Logic Operators (cont.)

e 1-bit logic AND resembles binary
multiplication:
Oe0=0, O0e1=0,
1¢0=0, lel =1
* 1-bit logic OR resembles binary addition,
except for one operation:
0+0=0, 0+1=1,
1+0=1, (# 10,)

Truth Tables for logic operators

Truth table: tabular form that uniguely represents the relationship
between the input variables of a function and its output

2-Input AND 2-Input OR

NOT

2023/7/13 Boolean Algebra PJF -7

Truth Tables (cont.)

* Q: Let a function F() depend on n variables.

How many rows are there in the truth table of
F() ?

m A: 2" rows, since there are 2" possible

binary patterns/combinations for the n
variables

Logic Gates

e Logic gates are abstractions of electronic circuit
components that operate on one or more input
signals to produce an output signal.

2-Input AND 2-Input OR NOT (Inverter)

2023/7/13 Boolean Algebra PJF -9

Timing Diagram

To T, T, T3 T, 5 T4

1
Input A - — DA 0

. oy o
signals~____ >) ; Tran§|’r|ons

F=A-B i B (l)B asic
Gate — 7 Assumption:

OUTPUT/" G:A+B e e

1
Signals\. = — -~ 7" 0 Zero time for
7 \\—'H-A' 7 b Sionals 1o
] 0 propagate

Through gates

Combinational Logic Circuit
from Logic Function

* Consider function F=A" + BeC’ + A’eB’
A combinational logic circuit can be constructed to implement F, by
appropriately connecting input signals and logic gates:
— Circuit input signals = from function variables (A, B, C)
— Circuit output signal = function output (F)
— Logic gates = from logic operations

2023/7/13 Boolean Algebra

PJF - 11

Combinational Logic Circuit
from Logic Function (cont.)

In order to design a cost-effective
and efficient circuit, we must
minimize the circuit’s size (area) and
propagation delay (time required for
an input signal change to be
observed at the output line)

Observe the truth table of F=A" + Be(C’
+ A’eB’ and G=A’ + Be(’

Truth tables for F and G are identical
- same function

-~ Ol >
= OolO|=|= 0|0 |®

— Ol Oo|=lo|/=| oD

Use G to implement the logic circuit
(less components)

2023/7/13 Boolean Algebra PJF - 12

Combinational Logic Circuit
from Logic Function (cont.)

2023/7/13 Boolean Algebra PJF - 13

Boolean Algebra

* VERY nice machinery used to manipulate
(simplify) Boolean functions

* George Boole (1815-1864): “An investigation
of the laws of thought”
 Terminology:
— Literal: A variable or its complement
— Product term: literals connected by e
— Sum term: literals connected by +

Boolean Algebra Properties

Let X: boolean variable, 0,1: constants

X+0=X --Zero Axiom
Xe]l =X --Unit Axiom
X+1 =1 --UnitProperty

> W

Xe(0 =0 --Zero Property

Boolean Algebra Properties (cont.)

Let X: boolean variable, 0,1: constants

X+ X=X --ldepotence
X eX =X --ldepotence
X+X =1 --Complement
XeX =0 --Complement

O 00 N O U

(X') =X -- Involution

Duality

The dual of an expression is obtained by exchanging

(e and +), and (1 and 0) in it, provided that the
precedence of operations is not changed.

Cannot exchange x with x’
Example:

— Find H(x,y,z), the dual of F(x,y,z) = x'yz’ + x'y’z
— H = (X'+y+2’) (X'+y’+ 2)

Duality (cont’d)

With respect to duality, Identities 1- 8
have the following relationship:

1. X+0=X 2X+*1 =X (dualof1)
3.X+1 =1 4 X+0 =0 (dualof 3)
5 X+X=X 6X*X =X (dual of 5)
7.X+X'=1 8 X+*X =0 (dual of 8)

More Boolean Algebra Properties

Let XY, and Z: boolean variables

10 X+Y=Y+X 11.XeY=YeX -- Commutative
12. X+ (Y4Z) = (X+Y) + Z 13. Xe(YeZ) = (XeY)eZ - Associative
14. Xo(Y+Z) = XoY + XeZ 15
-- Distributive
16. (X+Y) =X oY 17. (X e Y)Y =X"+Y --DeMorgan’s
In general,
(X + X, + ..+ X) =XeX, o ... X’ and

n?’

(X oX 0. oX) =X+ X, + ...+ X'

n

Absorption Property

1. X+ Xey=X

. X®(x+y) = x (dual)

Proof:

X + Xoy = Xxo]1 + xey
= xe(1+y)
=xel
= X

QED (2 true by duality, why?)

o Uk W

Power of Duality

X + Xey = X is true, so (x + xey)’ =x’

(X + xoy)' =x"e(x"+y’)

x"o(x'+y’) =x’

Let X=x', Y=y’

Xe(X+Y) =X, which is the dual of x + xey = x.

The above process can be applied to any formula. So
if a formula is valid, then its dual must also be valid.

Proving one formula also proves its dual.

Consensus Theorem

1.xy +X'z+vyz=xy+x'z
2.(x+y)e(x'+z)e = (x+y)e(x'+z) -- (dual)
* Proof:

Xy +Xx'z+yz=xy+x'z+ (x+x’')yz
=Xy + X'z + xyz + x'yz
= (xy + xyz) + (X'z + x’zy)
=Xy + X'z

QED (2 true by duality).

Truth Tables (revisited)

 Enumerates all possible
combinations of variable values
and the corresponding function
value

* Truth tables for some arbitrary
functions
Fl(x,y,z), Fz(x,y,z), and F3(X,y,z) are
shown to the right.

x|\ylz| |F|Fa|F;
00|00 |1 |1
0/0{1|]|0 0 |1
0/1/0/(0 |0 |1
0/1{1/(0 |1 |1
10001 |0
10/1//0/1 |0
11/0/(0|0 |0
111(1/(1 |01

Truth Tables (cont.)

Truth table: a unique representation of a Boolean
function

If two functions have identical truth tables, the
functions are equivalent (and vice-versa).

Truth tables can be used to prove equality theorems.

However, the size of a truth table grows
exponentially with the number of variables involved,
hence unwieldy. This motivates the use of Boolean
Algebra.

Boolean expressions-NOT unique

=Te

* Unlike truth tables, expressions
representing a Boolean function are NOT
unique.

 Example:

— F(x,y,z) =x"oy’ ez’ + X' eye7’ + xoye7’

- G(lelz) = X'.y'.Z, + y.Z’

 The corresponding truth tables for F() and
G() are to the right. They are identical.

 Thus, F() = G()

=== = O 00|00 (X
=IO O~ O~ O|N

2023/7/13 Boolean Algebra

Algebraic Manipulation

* Boolean algebra is a useful tool for simplifying
digital circuits.

* Why do it? Simpler can mean cheaper, smaller,
faster.

 Example: Simplify F = x'yz + x'yz’ + xz.
F =x'yz+x'yz’ +xz
=x'y(z+7") + xz
=x'yel + xz
= x'y + Xz

Algebraic Manipulation (cont.)

* Example: Prove

Y |

XYz +x'yz +xyz’ =x'z’ +yz’
* Proof:

XIyIZI+ lezl+ XyZI

........
3

= X2’ (y'+y) + yz’ (X" +x)
=X'2'el +yz' el
=Xz +vy7Z

QED.

Complement of a Function

* The complement of a function is derived by
interchanging (® and +), and (1 and 0), and
complementing each variable.

 Otherwise, interchange 1s to Os in the truth
table column showing F.

* The complement of a function IS NOT THE
SAME as the dual of a function.

Complementation: Example

* Find G(x,y,z), the complement of
F(lelz) = Xy’zl + X’yz

e G=F =(xy'z +x'yz)’
= (xy’z’)" o (x'yz)’ DeMorgan
= (x'+y+z) ® (x+y'+z’) DeMorgan again

* Note: The complement of a function can also be
derived by finding the function’s dual, and then
complementing all of the literals

Canonical and Standard Forms

* We need to consider formal techniques for the
simplification of Boolean functions.

— Identical functions will have exactly the same
canonical form.

— Minterms and Maxterms

— Sum-of-Minterms and Product-of- Maxterms

— Product and Sum terms

— Sum-of-Products (SOP) and Product-of-Sums (POS)

Definitions

Literal: A variable or its complement
Product term: literals connected by e
Sum term: literals connected by +

Minterm: a product term in which all the variables
appear exactly once, either complemented or
uncomplemented

Maxterm: a sum term in which all the variables
appear exactly once, either complemented or
uncomplemented

Minterm

Represents exactly one combination in the truth table.

Denoted by m;, where j is the decimal equivalent of
the minterm’s corresponding binary combination (b)).

A variable in m; is complemented if its value in b; is O,
otherwise is uncomplemented.

Example: Assume 3 variables (A,B,C), and j=3. Then, b;
=011 and its corresponding minterm is denoted by m,
= A'BC

Maxterm

Represents exactly one combination in the truth table.

Denoted by M,, where j is the decimal equivalent of
the maxterm’s corresponding binary combination (b)).

A variable in M;is complemented if its value in b; is 1,
otherwise is uncomplemented.

Example: Assume 3 variables (A,B,C), and j=3. Then, bj
= 011 and its corresponding maxterm is denoted by
M; = A+B'+C’

Truth Table notation for Minterms and

Maxterms
* Minterms and x |y |z | | Minterm | Maxterm
Maxterms are easyo [0 |0 | [xy'z =my |x+y+z= M,
to denote usinga [0 [0 |1 | [xyz=m, |xsy+z =M,
truth table. 0110 [xXyz=m, |xey+z=M,
* Example: 01 |1 | |xXyz=m; |x+y'+z'=M;
Assume 3 variable$: [0 [0 | [xy'z=m, |x+y+z=M,
X,Y,Z o 1 0|1 Xy'z=ms | X+y+Z' = Mg
(order is fixed) 110 [xyz=mg |xeysz=M,
111 XyZ = my x."‘y."‘z. = M7

Canonical Forms (Unique)

* Any Boolean function F() can be expressed as a
unique sum of minterms and a unique product
of maxterms (under a fixed variable ordering).

* |n other words, every function F() has two
canonical forms:
— Canonical Sum-Of-Products (sum of minterms)

— Canonical Product-Of-Sums (product of
maxterms)

Canonical Forms (cont.)

e Canonical Sum-Of-Products:
The minterms included are those m; such that
F()=1inrow of the truth table for F().

e Canonical Product-Of-Sumes:
The maxterms included are those IVIj such that
F()=0in rowj of the truth table for F().

Example

* Truth table for f,(a,b,c) at right
* The canonical sum-of-products form for f,

IS

f(a,b,c)=m; +m, +m, +mg

=a’b’c +a’bc’ + ab’c’ + abc’
* The canonical product-of-sums form for f, is

fi(a,b,c)=M, e M; e M. e M,

= (a+b+c)e(a+b’+c’)e
(a’+b+c’)e(a’+b’+c’).

= =100 |= =0 0 U
= OoO | = O = O = O

Shorthand: Y and TJ

* f,(a,b,c) =% m(1,2,4,6), where } indicates that this is
a sum-of-products form, and m(1,2,4,6) indicates
that the minterms to be included are m,, m,, m,, and
me.

* f,(a,b,c) =TT M(0,3,5,7), where TT indicates that this
is a product-of-sums form, and M(0,3,5,7) indicates

that the maxterms to be included are M,, M;, M,
and M.,

* Since m; = M/" for any j,
> m(1,2,4,6) =TT M(0,3,5,7) =f;(a,b,c)

Conversion Between Canonical Forms

Replace z with ﬂ (or vice versa) and replace those j’s that
appeared in the original form with those that do not.

Example:

f,(a,b,c) =a’b’c+a’bc’ + ab’c’ + abc’
=m,+m,+m,+mg
=2(1,2,4,6)
=11(0,3,5,7)

= (a+b+c)e(a+b’+c’)e(a’+b+c’)e(a’+b’+c’)

Standard Forms (NOT Unique)

e Standard forms are “like” canonical forms,
except that not all variables need appear in
the individual product (SOP) or sum (POS)
terms.

 Example:

f,(a,b,c) =a’b’c+bc’ + ac’

is a standard sum-of-products form
* f,(a,b,c) = (a+b+c)e(b’+c’)e(a’+cC’)

is a standard product-of-sums form.

Conversion of SOP from standard to
canonical form

* Expand non-canonical terms by inserting
equivalent of 1 in each missing variable x:
(x+x')=1
 Remove duplicate minterms
* f,(a,b,c) =a’b’c+bc” +ac
=a’b’c+ (a+a’)bc’ + a(b+b’)c’
=a’b’c+abc’ +a’bc’ + abc” +ab’c’
=a’b’c + abc’ + a’bc + ab’c’

Conversion of POS from standard to
canonical form

Expand noncanonical terms by adding O in terms of
missing variables (e.g., xx’ = 0) and using the
distributive law
Remove duplicate maxterms
f.(a,b,c) = (a+b+c)e(b’+c’)e(a’+c’)

= (a+b+c)e(aa’+b’+c’)e(a’+bb’+c’)

= (a+b+c)e(a+b’+c’)e(a’+b’+c’)e

(a’+b+c’)e(a’+b’+C’)
= (a+b+c)e(a+b’+c’)e(a’+b’+c’)e(a’+b+C’)

Karnaugh Maps

Karnaugh maps (K-maps) are graphical
representations of boolean functions.

One map cell corresponds to a row in the
truth table.

Also, one map cell corresponds to a minterm
or a maxterm in the boolean expression

Multiple-cell areas of the map correspond to
standard termes.

Two-Variable Map

X2 X1

X 0 1 X5 0 1
0 1 0 2

0 m m| OR o mo| m,
2 3 1 3

1 m; ms 1 m, ms

NOTE: ordering of variables is IMPORTANT
for f(x1,X,), X; is the row, x, is the column.

Cell O represents x,'x,. Cell 1 represents
X1 X,, etc. If a minterm is present in the
function, then a 1l is placed in the
corresponding cell.

Two-Variable Map (cont.)

* Any two adjacent cells in the map differ by
ONLY one variable, which appears
complemented in one cell and
uncomplemented in the other.

 Example:
m, (=x,'x,’) is adjacent to m, (=x,'x,) and m,
(=x,%,") but NOT m, (=x,X,)

2-Variable Map -- Example

f(x1,%,) = X%, + X%, + X%,
=My +m; +m,
=X, +X,
1s placed in K-map for specified
minterms my,, m,;, m,

Grouping (ORing) of 1s allows
simplification

What (simpler) function is
represented by each dashed
rectangle?

’ —
’ —
Note m, covered twice

X2

X1

0

Minimization as SOP using K-map

Enter 1s in the K-map for each product term in
the function

Group adjacent K-map cells containing 1s to
obtain a product with fewer variables. Group
size must be in power of 2 (2, 4, 8, ...)

Handle “boundary wrap” for K-maps of 3 or
more variables.

Realize that answer may not be unique

Three-Variable Map

-Note: variable ordering is (x,y,z); yz specifies
column, x specifies row.

-Each cell is adjacent to three other cells (left or
right or top or bottom or edge wrap)

Three-Variable Map (cont.)

intferm
/mm

The types of structures
that are either minterms or
are generated by repeated
application of the
minimization theorem on a
three variable map are
shown at right.

Groups of 1, 2, 4, 8 are

possible. group of 2 terms

——— -

I

group of 4 terms

Simplification

e Enter minterms of the Boolean function into
the map, then group terms

 Example: f(a,b,c) = a’c + abc + bc’

e Result: f(a,b,c) =a’c+b \\\
Clbc q
11
1

lwll/

[SR IR U ——

More Examples

X 20 o 1 10
* fi(x,y,2) =% m(2,3,5,7) 0 1
' 1
mfi(x,y, z)=xy+xz
* f,(x,y,2) = > m(0,1,2,3,6)
1 /1 |1

nf,(x,y, 2) = X'+y2’

Four-Variable Maps

YZ
WX 00 01 11 10

00 M M M3 M

01 (Mg M5 M7 Mg

11 M2 [My3 [Mys | My

10 Mg My My |[My

* Top cells are adjacent to bottom cells. Left-edge cells
are adjacent to right-edge cells.

* Note variable ordering (WXYZ).

2023/7/13 Boolean Algebra PJF - 52

Four-variable Map Simplification

One square represents a minterm of 4 literals.

A rectangle of 2 adjacent squares represents a
product term of 3 literals.

A rectangle of 4 squares represents a product term
of 2 literals.

A rectangle of 8 squares represents a product term
of 1 literal.

A rectangle of 16 squares produces a function that is
equal to logic 1.

Example

e Simplify the following Boolean function (A,B,C,D) =
>m(0,1,2,4,5,7,8,9,10,12,13).
* First put the function g() into the map, and then
group as many 1s as possible.

ab

2023/7/13

Boolean Algebra

cd
1 |1 1 1 |1
1 1 |1 1 |1 |1
1 |1 1 |1
1 |1 1 1 |1
g(A,B.C,D) = c'+b'd+a’bd

PJF - 54

Don't Care Conditions

There may be a combination of input values which
— will never occur
— if they do occur, the output is of no concern.

The function value for such combinations is called a don't
care.

They are denoted with x or —. Each x may be arbitrarily
assigned the value 0 or 1 in an implementation.

Don’t cares can be used to further simplify a function

Minimization using Don’t Cares

 Treat don't cares as if they are 1s to generate
Pls.

* Delete Pl's that cover only don't care
minterms.

* Treat the covering of remaining don't care
minterms as optional in the selection process
(i.e. they may be, but need not be, covered).

Example

e Simplify the function f(a,b,c,d)
whose K-map is shown at the
right.

e f=2a'c’'d+ab’+cd’+a’bc’
or

e f=2a'c’'d+ab’+cd’+a’bd’

00 0111 10
00j0{1/0]|1
0111|101
11{0 0| x| x
10{1]1]x|x

0i1]0]il:

T o1

0|0 x|x

101]x|ix

0i1]0]il:

‘f1]0)0

0|0 x|x

101]x|ix

d
Another Example by

x[1/0]0
1| x|0]|x
* Simplify the function 1|x|x|1
g(a,b,c,d) whose K-map is O]x|x|0
shown at right. <[1]0]0
» g=a'c’+ab 1,%/0]x
or 1] x| x| 1
Olx|{x|0
e g=ac+bd
x| 1400
[l x]oix]
Lo x| x[i1]
Olx|x|0

Algorithmic minimization

e What do we do for functions with more
variables?

* You can “code up” a minimizer (Computer-
Aided Design, CAD)
— Quine-McCluskey algorithm
— |terated consensus

 We won’t discuss these techniques here

More Logic Gates

* NAND and NOR Gates
— NAND and NOR circuits
— Two-level Implementations
— Multilevel Implementations

* Exclusive-OR (XOR) Gates
— Odd Function
— Parity Generation and Checking

More Logic Gates

* We can construct any combinational circuit with
AND, OR, and NOT gates

X g
fa) "y A NOT X
_ X’

XY XANDY XY XORY X NOT X

o 0 0 o 0 Q o 1

#] 1 0 0 1 1 1 Q

1 a 0 1 Q 1

1 1 1 1 1 1 Copy right @ 2000 by Prentica Hall, Inc.

Digital Design Pindples and Practices, 3

* Additional logic gates are used for practical reasons

2023/7/13 Boolean Algebra PJF - 61

BUFFER, NAND and NOR

X|F
X [FuX 00
101

NAND Gate

 Known as a “universal” gate because ANY
digital circuit can be implemented with NAND

gates alone.

* To prove the above, it suffices to show that
AND, OR, and NOT can be implemented using

NAND gates only.

NAND Gate Emulation

F = (X-Y)) X F XY
- (xn+yn)n AN
- x”.y"
= XY

F = (X+YY)
= X

+Y

i

Oy

Y

YY

NAND Circuits

e To easily derive a NAND implementation of a
boolean function:
— Find a simplified SOP
— SOP is an AND-OR circuit
— Change AND-OR circuit to a NAND circuit
— Use the alternative symbols below

X__
v_} XYZ $_E+?+E=x_vz
E—

{a) AND - NOT (b) NOT - OR

X Dc X =l> X

{c) NOT

M =€ X

|

AND-OR (SOP) Emulation
Using NANDs

(al WX Y (b
J: G i
Y Y

¥ Z (Y- Z)
L ——) L ——)

Two-level implementations

a) Original SOP
b) Implementation with NANDs

AND-OR (SOP) Emulation
Using NANDs (cont.)

¥ Z (Y- Z)
L ——) L ——)

Verify:
(@) 6= WXY +YZ

® 6=((WXY)-(YZ))
= (WXY)' + (YZ)' = WXY +YZ

(a)
(b)
(c)

SOP with NAND

So >

Do—of>—) >
So—d>—

ofslofulsle

=

Original SOP
Double inversion and grouping
Replacement with NANDs

)
BDa=D=
)

Copynght 2000 by Prertice Hall, Inc.
- e - 1 o "
L:l.i:'.-.li Uasign Finciples and Figclices, o'

AND-NOT

NOT-OR

Two-Level NAND Gate
Implementation - Example

F(X,Y,Z) =2m(0,6)
1. Express F in SOP form:
F=XY7Z +XYZ
Obtain the AND-OR implementation for F.

3. Add bubbles and inverters to transform AND-
OR to NAND-NAND gates.

N[| 2 |

N |

Example (cont.)

||
S~
N =] e |
.

i

|
N
N | e
1

Two-level implementation with NANDs
F=XY7Z +XYZ

Multilevel NAND Circuits

Starting from a multilevel circuit:

1.

2.

Convert all AND gates to NAND gates with AND-NOT
graphic symbols.

Convert all OR gates to NAND gates with NOT-OR
graphic symbols.

Check all the bubbles in the diagram. For every
bubble that is not counteracted by another bubble
along the same line, insert a NOT gate or
complement the input literal from its original
appearance.

Example

Use NAND gates
and NOT gates to
implement
Z=E'F(AB+C’+D’)+GH
AB
AB+C’+D’
E’F(AB+C’+D’)
E'F(AB+C’+D’)+GH

Q
:

\
-

o
7
a
o
g
=
38
g3

.

Yet Another Example!

)

{b) NAND gates
Flg. 2-32 Implemianting F ={A B+AB)E({C +)

\

NOR Gate

* Also a “universal” gate because ANY digital
circuit can be implemented with NOR gates
alone.

* This can be similarly proven as with the NAND
gate.

NOR Circuits

* To easily derive a NOR implementation of a boolean
function:
— Find a simplified POS
— POS is an OR-AND circuit
— Change OR-AND circuit to a NOR circuit
— Use the alternative symbols below

3*3“‘“2 ﬂi?f=I+Y+

(@) OR - NOT (6) NOT — AND
Fig. 2-34 Two Graphic Symbols for NOR Gate

Pl =
M=

Two-Level NOR Gate

Implementation - Example

F(X,Y,Z) = Zm(0,6)

1. Express F' in SOP form:
1. F=3¥m(1,2,3,4,5,7)

=XYZ+XYZ +XYZ+XYZ +XY'Z+XYZ

2. F=XY +XY+Z

2. Take the complement of F’ to get F in the POS form:
F=(F)" = (X"+Y)(X+Y")Z'

3. Obtain the OR-AND implementation for F.

4. Add bubbles and inverters to transform OR-AND
implementation to NOR-NOR implementation.

< >

N|

Example (cont.)

Two-level implementation with NORs
F=(F) = (X'+Y)(X+Y')Z'

XOR and XNOR

\ X | Y | F=X®Y
XOR: "not-equal“ gate [T o1 o
0 1 1
X —— F 1] 0 1
y —— 1| 1 0

LW " X | Y | F=XoY

XNOR: “equal” gate oo "
« - 0 1 0
1|0 0
y —— 1| 1 1

Exclusive-OR (XOR) Function

XOR (also @) : the “not-equal” function
XOR(X)Y)=X®Y =X"Y + XY’
|dentities:

— X®0=X

- X®1=X

— X®X=0

— XX =1

Properties:

— XBY=YDX
—(XOY)OW=XD(YOW)

XOR function implementation

« XOR(a,b) =ab’ +a’b
e Straightforward: 5 gates

— 2 inverters, two 2-input ANDs, one 2-input OR
— 2 inverters & 3 2-input NANDs

* Nonstraightforward:
— 4 NAND gates

XOR circuit with 4 NANDs

>

D
Ba

T3 >—F=xev

Fig. 2-37 Exclusive-0OR Constructed with NAND Gates

