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Overview
• Binary logic and Gates
• Boolean Algebra

– Basic Properties
– Algebraic Manipulation

• Standard and Canonical Forms
– Minterms and Maxterms (Canonical forms)
– SOP and POS (Standard forms)

• Karnaugh Maps (K-Maps)
– 2, 3, 4, and 5 variable maps
– Simplification using K-Maps

• K-Map Manipulation
– Implicants: Prime, Essential
– Don’t Cares

• More Logic Gates
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Binary Logic

• Deals with binary variables that take 2 discrete 
values (0 and 1), and with logic operations

• Three basic logic operations: 

– AND, OR, NOT

• Binary/logic variables are typically 
represented as letters: A,B,C,…,X,Y,Z
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Binary Logic Function

F(vars) = expression

Example: F(a,b) = a’•b + b’

G(x,y,z) = x•(y+z’)
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set of binary

variables

Operators ( +, •, ‘ )
Variables

Constants ( 0, 1 )

Groupings (parenthesis)



Basic Logic Operators

• AND 

• OR 

• NOT 

• F(a,b) = a•b,   F is 1 if and only if a=b=1

• G(a,b) = a+b,  G is 1 if either a=1 or b=1

• H(a) = a’, H is 1 if a=0
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Binary

Unary



Basic Logic Operators (cont.)

• 1-bit logic AND resembles binary 
multiplication:

0 • 0 = 0, 0 • 1 = 0,

1 • 0 = 0, 1 • 1  = 1

• 1-bit logic OR resembles binary addition, 
except for one operation:

0 + 0 = 0, 0 + 1 = 1,

1 + 0 = 1, 1 + 1 = 1 (≠ 102)
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Truth Tables for logic operators

Truth table: tabular form that uniguely represents the relationship 
between the input variables of a function and its output

A B F=A•B

0 0 0

0 1 0

1 0 0

1 1 1
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2-Input AND

A B F=A+B

0 0 0

0 1 1

1 0 1

1 1 1

2-Input OR

A F=A’

0 1

1 0

NOT



Truth Tables (cont.)

• Q: Let a function F() depend on n variables.  
How many rows are there in the truth table of 
F() ?
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 A: 2n rows, since there are 2n possible 
binary patterns/combinations for the n
variables



Logic Gates

• Logic gates are abstractions of electronic circuit 
components that operate on one or more input 
signals to produce an output signal.
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2-Input AND 2-Input OR NOT (Inverter)

A A AB B
F G H

F = A•B G = A+B H = A’



Timing Diagram
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Combinational Logic Circuit
from Logic Function

• Consider function F = A’ + B•C’ + A’•B’ 

• A combinational logic circuit can be constructed to implement F, by 
appropriately connecting input signals and logic gates:

– Circuit input signals  from function variables (A, B, C)

– Circuit output signal  function output (F)

– Logic gates  from logic operations
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Combinational Logic Circuit
from Logic Function (cont.)

• In order to design a cost-effective 
and efficient circuit, we must 
minimize the circuit’s size (area) and 
propagation delay (time required for 
an input signal change to be 
observed at the output line)

• Observe the truth table of F=A’ + B•C’ 
+ A’•B’  and G=A’ + B•C’ 

• Truth tables for F and G are identical 
 same function

• Use G to implement the logic circuit 
(less components)

A B C F G

0 0 0 1 1

0 0 1 1 1

0 1 0 1 1

0 1 1 1 1

1 0 0 0 0

1 0 1 0 0

1 1 0 1 1

1 1 1 0 0
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Combinational Logic Circuit
from Logic Function (cont.)
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Boolean Algebra

• VERY nice machinery used to manipulate 
(simplify) Boolean functions

• George Boole (1815-1864): “An investigation 
of the laws of thought”

• Terminology:

– Literal: A variable or its complement

– Product term: literals connected by •

– Sum term: literals connected by +
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Boolean Algebra Properties

Let X: boolean variable,  0,1: constants

1. X + 0 = X  -- Zero Axiom

2. X • 1  = X  -- Unit Axiom

3. X + 1  = 1   -- Unit Property

4. X • 0  = 0  -- Zero Property
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Boolean Algebra Properties (cont.)

Let X: boolean variable,  0,1: constants

5. X + X = X  -- Idepotence

6. X • X  = X  -- Idepotence

7. X + X’ = 1   -- Complement

8. X • X’ = 0   -- Complement

9. (X’)’ = X -- Involution
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Duality

• The dual of an expression is obtained by exchanging 
(• and +), and (1 and 0) in it, provided that the 
precedence of operations is not changed.

• Cannot exchange x with x’ 
• Example:  

– Find H(x,y,z), the dual of F(x,y,z) = x’yz’ + x’y’z
– H  = (x’+y+z’) (x’+y’+ z)
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Duality (cont’d)
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With respect to duality, Identities 1 – 8 
have the following relationship:

1. X + 0 = X 2. X • 1  = X   (dual of 1)

3. X + 1  = 1 4. X • 0  = 0    (dual of 3)

5. X + X = X 6. X • X  = X   (dual of 5)

7. X + X’ = 1 8. X • X’  = 0   (dual of 8)



More Boolean Algebra Properties

Let X,Y, and Z: boolean variables

10. X + Y = Y + X 11. X • Y = Y • X           -- Commutative

12. X + (Y+Z) = (X+Y) + Z   13. X•(Y•Z) = (X•Y)•Z  -- Associative

14. X•(Y+Z) = X•Y + X•Z    15. X+(Y•Z) = (X+Y) • (X+Z)
-- Distributive

16. (X + Y)’ = X’ • Y’ 17. (X • Y)’ = X’ + Y’      -- DeMorgan’s

In general,
( X1 + X2 + … + Xn )’ = X1’•X2’ • … •Xn’,  and 
( X1•X2•… •Xn )’ = X1’ + X2’ + … + Xn’
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Absorption Property

1. x + x•y = x

2. x•(x+y) = x (dual)

• Proof:
x + x•y = x•1 + x•y

= x•(1+y) 
= x•1
= x

QED  (2 true by duality, why?)
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Power of Duality

1. x + x•y = x is true, so (x + x•y)’=x’

2. (x + x•y)’=x’•(x’+y’)

3. x’•(x’+y’) =x’

4. Let X=x’, Y=y’

5. X•(X+Y) =X, which is the dual of x + x•y = x.

6. The above process can be applied to any formula. So 
if a formula is valid, then its dual must also be valid.

7. Proving one formula also proves its dual.
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Consensus Theorem

1.xy + x’z + yz = xy + x’z

2.(x+y)•(x’+z)•(y+z) = (x+y)•(x’+z)  -- (dual)

• Proof:
xy + x’z + yz = xy + x’z + (x+x’)yz

= xy + x’z + xyz + x’yz
= (xy + xyz) + (x’z + x’zy)
= xy + x’z

QED (2 true by duality).
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Truth Tables (revisited)

• Enumerates all possible 
combinations of variable values 
and the corresponding function 
value 

• Truth tables for some arbitrary 
functions  
F1(x,y,z), F2(x,y,z), and F3(x,y,z) are 
shown to the right.
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x y z F1 F2 F3

0 0 0 0 1 1

0 0 1 0 0 1

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 0 1 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 1 1 0 1



Truth Tables (cont.)

• Truth table: a unique representation of a Boolean 
function

• If two functions have identical truth tables, the 
functions are equivalent (and vice-versa).

• Truth tables can be used to prove equality theorems. 

• However, the size of a truth table grows 
exponentially with the number of variables involved, 
hence unwieldy. This motivates the use of Boolean 
Algebra.
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Boolean expressions-NOT unique

• Unlike truth tables, expressions 
representing a Boolean function are NOT 
unique.

• Example:
– F(x,y,z) = x’•y’•z’ + x’•y•z’ + x•y•z’

– G(x,y,z) = x’•y’•z’ + y•z’

• The corresponding truth tables for F() and 
G() are to the right. They are identical.

• Thus, F() = G()
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x y z F G

0 0 0 1 1

0 0 1 0 0

0 1 0 1 1

0 1 1 0 0

1 0 0 0 0

1 0 1 0 0

1 1 0 1 1

1 1 1 0 0



Algebraic Manipulation

• Boolean algebra is a useful tool for simplifying 
digital circuits.

• Why do it? Simpler can mean cheaper,  smaller, 
faster.

• Example: Simplify F = x’yz + x’yz’ + xz.
F = x’yz + x’yz’ + xz

= x’y(z+z’) + xz
= x’y•1 + xz
= x’y + xz
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Algebraic Manipulation (cont.)

• Example: Prove
x’y’z’ + x’yz’ + xyz’ = x’z’ + yz’

• Proof:
x’y’z’+ x’yz’+ xyz’

= x’y’z’ + x’yz’ + x’yz’ + xyz’
= x’z’(y’+y) + yz’(x’+x)
= x’z’•1 + yz’•1
= x’z’ + yz’

QED.
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Complement of a Function

• The complement of a function is derived by 
interchanging (• and +), and (1 and 0), and 
complementing each variable.

• Otherwise, interchange 1s to 0s in the truth 
table column showing F.

• The complement of a function IS NOT THE 
SAME as the dual of a function.
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Complementation: Example

• Find G(x,y,z), the complement of
F(x,y,z) = xy’z’ + x’yz

• G = F’ = (xy’z’ + x’yz)’
= (xy’z’)’ • (x’yz)’ DeMorgan

= (x’+y+z) • (x+y’+z’)  DeMorgan again

• Note: The complement of a function can also be 
derived by finding the function’s dual, and then 
complementing all of the literals
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Canonical and Standard Forms

• We need to consider formal techniques for the 
simplification of Boolean functions.
– Identical functions will have exactly the same 

canonical form.

– Minterms and Maxterms

– Sum-of-Minterms and Product-of- Maxterms

– Product and Sum terms

– Sum-of-Products (SOP) and Product-of-Sums (POS)
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Definitions

• Literal: A variable or its complement

• Product term: literals connected by •

• Sum term: literals connected by +

• Minterm: a product term in which all the variables 
appear exactly once, either complemented or 
uncomplemented

• Maxterm: a sum term in which all the variables 
appear exactly once, either complemented or 
uncomplemented

2023/7/13 Boolean Algebra PJF - 31



Minterm

• Represents exactly one combination in the truth table.

• Denoted by mj, where j is the decimal equivalent of 
the minterm’s corresponding binary combination (bj).

• A variable in mj is complemented if its value in bj is 0, 
otherwise is uncomplemented.

• Example: Assume 3 variables (A,B,C), and j=3.  Then, bj

= 011 and its corresponding minterm is denoted by mj

= A’BC
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Maxterm

• Represents exactly one combination in the truth table.

• Denoted by Mj, where j is the decimal equivalent of 
the maxterm’s corresponding binary combination (bj).

• A variable in Mj is complemented if its value in bj is 1, 
otherwise is uncomplemented.

• Example: Assume 3 variables (A,B,C), and j=3.  Then, bj

= 011 and its corresponding maxterm is denoted by 
Mj = A+B’+C’
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Truth Table notation for Minterms and 
Maxterms

• Minterms and 
Maxterms are easy 
to denote using a 
truth table.

• Example: 
Assume 3 variables 
x,y,z 
(order is fixed)
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x y z Minterm Maxterm

0 0 0 x’y’z’ = m0 x+y+z = M0

0 0 1 x’y’z = m1 x+y+z’ = M1

0 1 0 x’yz’ = m2 x+y’+z = M2

0 1 1 x’yz = m3 x+y’+z’= M3

1 0 0 xy’z’ = m4 x’+y+z = M4

1 0 1 xy’z = m5 x’+y+z’ = M5

1 1 0 xyz’ = m6 x’+y’+z = M6

1 1 1 xyz = m7 x’+y’+z’ = M7



Canonical Forms (Unique)

• Any Boolean function F( ) can be expressed as a 
unique sum of minterms and a unique product
of maxterms (under a fixed variable ordering).

• In other words, every function F() has two 
canonical forms:
– Canonical Sum-Of-Products  (sum of minterms)

– Canonical Product-Of-Sums (product of 
maxterms)
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Canonical Forms (cont.)

• Canonical Sum-Of-Products:
The minterms included are those mj such that 
F( ) = 1 in row j of the truth table for F( ).

• Canonical Product-Of-Sums:
The maxterms included are those Mj such that 
F( ) = 0 in row j of the truth table for F( ).
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Example

• Truth table for f1(a,b,c) at right

• The canonical sum-of-products form for f1

is
f1(a,b,c) = m1 + m2 + m4 + m6

= a’b’c + a’bc’ + ab’c’ + abc’

• The canonical product-of-sums form for f1 is
f1(a,b,c) = M0 • M3 • M5 • M7

= (a+b+c)•(a+b’+c’)• 
(a’+b+c’)•(a’+b’+c’).

• Observe that: mj = Mj’
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a b c f1

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0



Shorthand: ∑ and ∏

• f1(a,b,c) = ∑ m(1,2,4,6), where ∑ indicates that this is 
a sum-of-products form, and m(1,2,4,6) indicates 
that the minterms to be included are m1, m2, m4, and 
m6.

• f1(a,b,c) = ∏ M(0,3,5,7), where ∏ indicates that this 
is a product-of-sums form, and M(0,3,5,7) indicates 
that the maxterms to be included are M0, M3, M5, 
and M7.

• Since mj = Mj’  for any j,
∑ m(1,2,4,6) = ∏ M(0,3,5,7) = f1(a,b,c) 
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Conversion Between Canonical Forms

• Replace ∑ with ∏ (or vice versa) and replace those j’s that 

appeared in the original form with those that do not.

• Example:
f1(a,b,c) = a’b’c + a’bc’ + ab’c’ + abc’ 

= m1 + m2 + m4 + m6

= ∑(1,2,4,6)

= ∏(0,3,5,7)

= (a+b+c)•(a+b’+c’)•(a’+b+c’)•(a’+b’+c’)
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Standard Forms (NOT Unique)

• Standard forms are “like” canonical forms, 
except that not all variables need appear in 
the individual product (SOP) or sum (POS) 
terms.

• Example:
f1(a,b,c) = a’b’c + bc’ + ac’
is a standard sum-of-products form

• f1(a,b,c) = (a+b+c)•(b’+c’)•(a’+c’)
is a standard product-of-sums form.
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Conversion of SOP from standard to 
canonical form

• Expand non-canonical terms by inserting 
equivalent of 1 in each missing variable x:
(x + x’) = 1

• Remove duplicate minterms

• f1(a,b,c) = a’b’c + bc’ + ac’
= a’b’c + (a+a’)bc’ + a(b+b’)c’
= a’b’c + abc’ + a’bc’ + abc’ + ab’c’
= a’b’c + abc’ + a’bc + ab’c’
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Conversion of POS from standard to 
canonical form

• Expand noncanonical terms by adding 0 in terms of 
missing variables (e.g., xx’ = 0) and using the 
distributive law

• Remove duplicate maxterms

• f1(a,b,c)   = (a+b+c)•(b’+c’)•(a’+c’)
= (a+b+c)•(aa’+b’+c’)•(a’+bb’+c’)
= (a+b+c)•(a+b’+c’)•(a’+b’+c’)•

(a’+b+c’)•(a’+b’+c’)
= (a+b+c)•(a+b’+c’)•(a’+b’+c’)•(a’+b+c’)
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Karnaugh Maps

• Karnaugh maps (K-maps) are graphical
representations of boolean functions.

• One map cell corresponds to a row in the 
truth table.

• Also, one map cell corresponds to a minterm 
or a maxterm in the boolean expression

• Multiple-cell areas of the map correspond to 
standard terms.
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Two-Variable Map
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m3m21

m1m00

10x1

x2

0 1

2 3

NOTE: ordering of variables is IMPORTANT 
for f(x1,x2), x1 is the row, x2 is the column.

Cell 0 represents x1’x2’; Cell 1 represents 
x1’x2; etc. If a minterm is present in the 
function, then a 1 is placed in the 
corresponding cell.

m3m11

m2m00

10x2

x1

0 2

1 3

OR



Two-Variable Map (cont.)

• Any two adjacent cells in the map differ by 
ONLY one variable, which appears 
complemented in one cell and 
uncomplemented in the other. 

• Example:
m0 (=x1’x2’) is adjacent to m1 (=x1’x2) and m2 

(=x1x2’) but NOT m3 (=x1x2) 
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2-Variable Map -- Example 

• f(x1,x2) = x1’x2’+ x1’x2 + x1x2’ 
= m0 + m1 + m2
= x1’ + x2’

• 1s placed in K-map for specified 
minterms m0, m1, m2

• Grouping (ORing) of 1s allows 
simplification

• What (simpler) function is 
represented by each dashed 
rectangle?
– x1’ = m0 + m1

– x2’ = m0 + m2

• Note m0 covered twice
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x1 0 1

0 1 1

1 1 0

x2

0 1

2 3



Minimization as SOP using K-map

• Enter 1s in the K-map for each product term in 
the function

• Group adjacent K-map cells containing 1s to 
obtain a product with fewer variables. Group 
size must be in power of 2 (2, 4, 8, …)

• Handle “boundary wrap” for K-maps of 3 or 
more variables.

• Realize that answer may not be unique
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Three-Variable Map
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m6m7m5m41

m2m3m1m00

10110100

yz

x
0 1 3 2

4 5 7 6

-Note: variable ordering is (x,y,z); yz specifies 
column, x specifies row.
-Each cell is adjacent to three other cells (left or 
right or top or bottom or edge wrap)



Three-Variable Map (cont.)
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The types of structures 
that are either minterms or 
are generated by repeated 
application of the 
minimization theorem on a 
three variable map are 
shown at right. 
Groups of 1, 2, 4, 8 are 
possible.

minterm

group of 2 terms

group of 4 terms



Simplification

• Enter minterms of the Boolean function into 
the map, then group terms

• Example: f(a,b,c) = a’c + abc + bc’

• Result: f(a,b,c) = a’c+ b
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1 1 1

1 1

abc

1 1 1

1 1



More Examples

• f1(x, y, z)  = ∑ m(2,3,5,7)

• f2(x, y, z)  =  ∑ m (0,1,2,3,6)
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 f1(x, y, z) = x’y + xz

f2(x, y, z) = x’+yz’

yz
X 00 01 11 10

0 1 1
1 1 1

1 1 1 1

1



Four-Variable Maps

• Top cells are adjacent to bottom cells. Left-edge cells 
are adjacent to right-edge cells.

• Note variable ordering (WXYZ).
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m10m11m9m810

m14m15m13m1211

m6m7m5m401

m2m3m1m000

10110100WX

YZ



Four-variable Map Simplification

• One square represents a minterm of 4 literals.

• A rectangle of 2 adjacent squares represents a 
product term of 3 literals.

• A rectangle of 4 squares represents a product term 
of 2 literals.

• A rectangle of 8 squares represents a product term 
of 1 literal.

• A rectangle of 16 squares produces a function that is 
equal to logic 1.
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Example

• Simplify the following Boolean function (A,B,C,D) = 
∑m(0,1,2,4,5,7,8,9,10,12,13).

• First put the function g( ) into the map, and then 
group as many 1s as possible.
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cd
ab

111

11

111

111

g(A,B,C,D) = c’+b’d’+a’bd

111

11

111

111



Don't Care Conditions

• There may be a combination of input values which

– will never occur

– if they do occur, the output is of no concern.

• The function value for such combinations is called a don't 
care.

• They are denoted with x or –. Each x may be arbitrarily 
assigned the value 0 or 1 in an implementation.

• Don’t cares can be used to further simplify a function
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Minimization using Don’t Cares

• Treat don't cares as if they are 1s to generate 
PIs.

• Delete PI's that cover only don't care 
minterms.

• Treat the covering of remaining don't care 
minterms as optional in the selection process 
(i.e. they may be, but need not be, covered).
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Example

• Simplify the function f(a,b,c,d) 
whose K-map is shown at the 
right.

• f = a’c’d+ab’+cd’+a’bc’ 

or

• f = a’c’d+ab’+cd’+a’bd’
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xx11

xx00

1011

1010

xx11

xx00

1011

1010

0 1 0 1

1 1 0 1

0 0 x x

1 1 x x

ab
cd

00

01

11 

10

00 01 11 10



Another Example

• Simplify the function 
g(a,b,c,d) whose K-map is 
shown at right.

• g = a’c’+ ab
or

• g = a’c’+b’d
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x 1 0 0

1 x 0 x

1 x x 1

0 x x 0

x 1 0 0

1 x 0 x

1 x x 1

0 x x 0

x 1 0 0

1 x 0 x

1 x x 1

0 x x 0

ab
cd



Algorithmic minimization

• What do we do for functions with more 
variables?

• You can “code up” a minimizer (Computer-
Aided Design, CAD)

– Quine-McCluskey algorithm

– Iterated consensus

• We won’t discuss these techniques here

2023/7/13 Boolean Algebra PJF - 59



More Logic Gates

• NAND and NOR Gates
– NAND and NOR circuits

– Two-level Implementations

– Multilevel Implementations

• Exclusive-OR (XOR) Gates
– Odd Function

– Parity Generation and Checking
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More Logic Gates
• We can construct any combinational circuit with 

AND, OR, and NOT gates

• Additional logic gates are used for practical reasons
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BUFFER, NAND and NOR

2023/7/13 PJF - 62Boolean Algebra



NAND Gate

• Known as a “universal” gate because ANY 
digital circuit can be implemented with NAND 
gates alone.

• To prove the above, it suffices to show that 
AND, OR, and NOT can be implemented using 
NAND gates only.
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NAND Gate Emulation
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X

X

F = (X•X)’ 
= X’+X’ 
= X’

X
Y

Y

F = ((X•Y)’)’ 
= (X’+Y’)’ 
= X’’•Y’’
= X•Y

F = (X’•Y’)’ 
= X’’+Y’’
= X+Y

X

X

F = X’

X
Y

Y

F X•Y

F = X+Y



NAND Circuits
• To easily derive a NAND implementation of a 

boolean function:

– Find a simplified SOP

– SOP is an AND-OR circuit

– Change AND-OR circuit to a NAND circuit

– Use the alternative symbols below
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AND-OR (SOP) Emulation 
Using NANDs
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a) Original SOP

b) Implementation with NANDs

Two-level implementations



AND-OR (SOP) Emulation 
Using NANDs (cont.)
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Verify:

(a) G = WXY + YZ

(b) G = ( (WXY)’ • (YZ)’ )’ 
= (WXY)’’ + (YZ)’’ = WXY + YZ



SOP with NAND

(a) Original SOP

(b) Double inversion and grouping

(c) Replacement with NANDs 

2023/7/13 Boolean Algebra PJF - 68

AND-NOT

NOT-OR



Two-Level NAND Gate 
Implementation - Example

F (X,Y,Z) = m(0,6)

1. Express F in SOP form: 
F = X’Y’Z’ + XYZ’

2. Obtain the AND-OR implementation for F.

3. Add bubbles and inverters to transform AND-
OR to NAND-NAND gates.
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Example (cont.)

Two-level implementation with NANDs

F = X’Y’Z’ + XYZ’
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Multilevel NAND Circuits
Starting from a multilevel circuit:

1. Convert all AND gates to NAND gates with AND-NOT 
graphic symbols.

2. Convert all OR gates to NAND gates with NOT-OR 
graphic symbols.

3. Check all the bubbles in the diagram.  For every 
bubble that is not counteracted by another bubble 
along the same line, insert a NOT gate or 
complement the input literal from its original 
appearance.
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Example

Use NAND gates 
and NOT gates to 
implement 
Z=E’F(AB+C’+D’)+GH

AB            

AB+C’+D’

E’F(AB+C’+D’)

E’F(AB+C’+D’)+GH
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Yet Another Example!
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NOR Gate

• Also a “universal” gate because ANY digital 
circuit can be implemented with NOR gates 
alone.

• This can be similarly proven as with the NAND 
gate.
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NOR Circuits

• To easily derive a NOR implementation of a boolean 
function:

– Find a simplified POS

– POS is an OR-AND circuit

– Change OR-AND circuit to a NOR circuit

– Use the alternative symbols below
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Two-Level NOR Gate 
Implementation - Example

F(X,Y,Z) = m(0,6)

1. Express F’ in SOP form:
1. F’ = m(1,2,3,4,5,7)

= X’Y’Z + X’YZ’ + X’YZ + XY’Z’ + XY’Z + XYZ

2. F’ = XY’ + X’Y + Z

2. Take the complement of F’ to get F in the POS form: 
F = (F’)' = (X'+Y)(X+Y')Z'

3. Obtain the OR-AND implementation for F.

4. Add bubbles and inverters to transform OR-AND 
implementation to NOR-NOR implementation.
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Example (cont.)

Two-level implementation with NORs

F = (F’)' = (X'+Y)(X+Y')Z'
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XOR and XNOR

X Y F = XY

0 0 0

0 1 1

1 0 1

1 1 0
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Y

F

XOR: “not-equal” gate

X Y F = XY

0 0 1

0 1 0

1 0 0

1 1 1

X

Y

F

XNOR: “equal” gate

X



Exclusive-OR (XOR) Function

• XOR (also ) : the “not-equal” function

• XOR(X,Y) = X  Y = X’Y + XY’

• Identities:
– X  0 = X

– X  1 = X’

– X  X = 0

– X  X’ = 1

• Properties:
– X  Y = Y  X   

– (X  Y)  W = X  ( Y  W)
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XOR function implementation

• XOR(a,b) = ab’ + a’b

• Straightforward: 5 gates

– 2 inverters, two 2-input ANDs, one 2-input OR

– 2 inverters & 3 2-input NANDs

• Nonstraightforward:

– 4 NAND gates
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XOR circuit with 4 NANDs
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