## **Distributed Generation**

Prof. Subash Ranjan Kabat

#### Introduction

- Perspectives on DG Benefits
  - End-User Perspective
    - Back Generation to Provide Improved Reliability
    - Reduce Energy Bill
    - Participation in the Competitive Power Market
  - Distribution Utility Perspective
    - Transmission & Distribution Relief
    - Hedge Against of Uncertain Load Growth
    - Hedge Against Price Spike
  - Commercial Power Producer Perspective
    - Selling Power or Ancillary Service in the Deregulated Market
    - Integrated Resource Planning

#### Introduction

◊Distributed generation (DG), also known as on-site generation, distributed resources (DR), distributed energy resources (DER) or dispersed power (DP) is the use of small-scale power generation technologies located close to the load being served

- VEnergy Companies
- vEquipment Suppliers,
- ∨Regulators,
- VEnergy Users
- VFinancial and Supporting Companies



#### Reciprocating Engine Genset

- The Least Expensive DG Technology
- -High No<sub>x</sub> and So<sub>x</sub> Emission. This Severely Limits the Number of Hours the Units, Particularly Diesels, May Operate per Year.
- Natural Gas-Fire Engine Produce Fewer Emission.
  However, the Natural Gas Price is Unpredictable.



#### Superconducting Magnetic Energy Storage







# Carbon Nanotube(CNTFET)







#### Fuel Cell 02 from air 02 02 Electric Circuit e e- $H^+$ 0, H₂ H+ H+ H Polymer Electrolyte Membrane H<sup>+</sup> Fuel Cathode Catalyst Anode Catalyst H<sub>2</sub>O Exhaust



#### V WindGeneration







#### ∨ Photovoltaic



#### Interface to the Utility System

- ∨ Synchronous Machine
- ∨ Asynchronous Machine
- ∨ Electronic PowerInverters



#### Power Quality Issues

- ✓ Sustained Interruptions
- □ Voltage Regulation
- □ Voltage Ride Through
- □ Harmonics
- □ Voltage Sags
- □ Load Following
- □ Power Variation
- □ Misfiring of Reciprocating Engines

Voltage Drops Along the Feeder if the DG is
 Interrupted (Determine the Max. Capacity of DG)



# $\vee$ Islanding Main Utility Grid

Varying DG Output can Cause Excess Dutyon
 Utility Voltage Regulation Equipment



#### Transformer Connections

- Grounded Y-Y Connection
  - No Phase Shift
  - Less Concern for Ferroresonance
  - Allow DG to Feed All Types of Faults on the Utility System
  - Back Feed of the Triplen Harmonic
  - Should Insert Ground Impedance to Limit the Current

## A Microcomputer Based Network Protector Relay DG on Low-Voltage Distribution



## DG on Low-Voltage Distribution Networks

- Operation of AMicrocomputer Based Network
  Protector Relay
  - Network protector relays are used to monitor and control the power flow of low voltage AC to secondary network systems
  - The purpose of the network protector is to prevent the system from backfeeding and initiate automatic reclosing when the system returns to normal

## Benefits of Decentralized Generation

- v No high peak load shortages
- *Reduced high transmission and distribution losses*
- V Linking remote and inaccessible areas
- ∨ *Faster response to new power demands*
- Improved supply reliability and power management

#### $\vee$ Disadvantages of DG

- Power Quality
- Cost of Operation and Maintenance
- Long Term Reliability of the Units
- Interconnection

## Distributed Generation Applications

- **Continuous Power**
- ∨ Combined Heat and Power (CHP)
- ✓ Peaking Power
- ∨ Green Power
- ✓ Premium Power
- ∨ Emergency Power System
- ✓ Standby Power System
- ∨ *True Premium Power System*
- Transmission and Distribution Deferral
- ✓ Ancillary Service Power

## Identification of DG Installation

- Evaluation of distributed generation opportunities in end-use markets
- Assessments of distributed generation technologies
- V Identification of potential sites for distributed generation applications
- VDifferent price and Performance parameters
- Feasibility studies for distributed generation projects

## Role of Decentralized Generation in Smart Grid

- Natural Extensions of SmartGrid
- ∨ Better System Management
- Additional Revenue Stream
- Less Investment and less transportation cost
- Cutting linelosses
- Ease of Control from Islanding and antiislanding Scheme
- Reduces carbon emission and thus supports sustainable livelihood.
- $\vee$  Automatic Resynchronization.



#### Government Policy of India

- V The Electricity Act, 2003 has given a thrust to distributed generation particularly in the context of rural electrification. The Act specifies distributed generation and supply through stand-alone conventional and renewable energy systems.
- V The National Electricity Policy notified on 12 February 2005 recommends under the Rural Electrification component, that to provide a reliable rural electrification system, wherever conventional grid is not feasible, decentralized distributed generation facilities (using conventional or nonconventional sources of energy) together with local distribution network be provided.
- V Two specific schemes, the Rajiv Gandhi Grameen Vidyutikaran Yojna and the Remote Village Electrification Scheme, will provide up to 90% capital subsidy for rural electrification projects using decentralized distributed generation options based on conventional and non-conventional fuels.