Karnaugh Mapping Digital Electronics

Prof. Rasmita Lenka

Karnaugh Mapping or K-Mapping

This presentation will demonstrate how to

- Create and label two, three, & four variable K-Maps.
- Use the K-Mapping technique to simplify logic designs with two, three, and four variables.
- Use the K-Mapping technique to simplify logic design containing *don't care* conditions.

Boolean Algebra Simplification

K-Mapping Simplification

Karnaugh Map Technique

- K-Maps are a graphical technique used to simplify a logic equation.
- K-Maps are procedural and much *cleaner* than Boolean simplification.
- K-Maps can be used for any number of input variables, BUT are only practical for two, three, and four variables.

K-Map Format

- Each minterm in a truth table corresponds to a cell in the K-Map.
- K-Map cells are labeled such that both horizontal and vertical movement diffe only by one variable.
- Since the adjacent cells differ by only one variable, they can be grouped to create simpler terms in the sum-of-products expression.
- The sum-of-products expression for the logic function can be obtained by OR-ing together the cells or group of cells that contain 1s.

Adjacent Cells = Simplification

Truth Table to K-Map Mapping

Two Variable K-Map

Two Variable K-Map Groupings

Groups of One – 4

Two Variable K-Map Groupings

Groups of Two – 4

Two Variable K-Map Groupings

Group of Four – 1

K-Map Simplification Process

- 1. Construct a label for the K-Map. Place 1s in cells corresponding to the 1s in the truth table. Place 0s in the other cells.
- 2. Identify and group all <u>isolated 1's</u>. Isolated 1's are ones that cannot be grouped with any other one, or can only be grouped with one other adjacent one.
- 3. Group any hex.
- Group any octet, even if it contains <u>some</u> 1s already grouped but not enclosed in a hex.
- 5. Group any quad, even if it contains <u>some</u> 1s already grouped but not enclosed in a hex or octet.
- 6. Group any pair, even if it contains <u>some</u> 1s already grouped but not enclosed in a hex, octet, or quad.
- 7. OR together all terms to generate the SOP equation.

Example #1: 2 Variable K-Map

Example:

After labeling and transferring the truth table data into the K-Map, write the simplified sum-of-products (SOP) logic expression for the logic function F_1 .

J	K	F ₁
0	0	1
0	1	1
1	0	0
1	1	0

Example #1: 2 Variable K-Map

Example:

After labeling and transferring the truth table data into the K-Map, write the simplified sum-of-products (SOP) logic expression for the logic function F_1 .

Solution:

Truth Table to K-Map Mapping

Three Variable K-Map

Three Variable K-Map Groupings

Three Variable K-Map Groupings

Groups of Four – 6

Three Variable K-Map Groupings

Group of Eight - 1

Example #2: 3 Variable K-Map

Example:

After labeling and transferring the truth table data into the K-Map, write the simplified sum-of-products (SOP) logic expression for the logic function F_2 .

Е	F	G	F_2
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Example #2: 3 Variable K-Map

Example:

After labeling and transferring the truth table data into the K-Map, write the simplified sum-of-products (SOP) logic expression for the logic function F_2 .

Solution:

Truth Table to K-Map Mapping

Four Variable K-Map

	W	Х	Y	Z	F _{WXYZ}	
Minterm – 0	0	0	0	0	0	רן
Minterm – 1	0	0	0	1	1	
Minterm – 2	0	0	1	0	1] [
Minterm – 3	0	0	1	1	0	
Minterm – 4	0	1	0	0	1	<u>ן</u>
Minterm – 5	0	1	0	1	1	
Minterm – 6	0	1	1	0	0	1 [
Minterm – 7	0	1	1	1	1	
Minterm – 8	1	0	0	0	0	ר
Minterm – 9	1	0	0	1	0	
Minterm – 10	1	0	1	0	1	ר (
Minterm – 11	1	0	1	1	0	
Minterm – 12	1	1	0	0	1	ר
Minterm – 13	1	1	0	1	0	
Minterm – 14	1	1	1	0	1	
Minterm – 15	1	1	1	1	1	

Four Variable K-Map Groupings

Four Variable K-Map Groupings

Groups of Eight – 8 (two shown)

Four Variable K-Map Groupings

Group of Sixteen – 1

Example #3: 4 Variable K-Map

Example:

After labeling and transferring the truth table data into the K-Map, write the simplified sum-of-products (SOP) logic expression for the logic function F_3 .

R	S	Т	U	F ₃
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1 1		0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Example #3 : 4 Variable K-Map

Example:

After labeling and transferring the truth-table data into the K-Map, write the simplified sum-of-products (SOP) logic expression for the logic function F_3 .

Solution:

Don't Care Conditions

- A don't care condition, marked by (X) in the truth table, indicates a condition where the design doesn't care if the output is a (0) or a (1).
- A don't care condition can be treated as a (0) or a (1) in a K-Map.
- Treating a *don't care* as a (0) means that you do not need to group it.
- Treating a *don't care* as a (1) allows you to make a grouping larger, resulting in a simpler term in the SOP equation.

Some You Group, Some You Don't

This *don't care* condition was treated as a (1). This allowed the grouping of a single one to become a grouping of two, resulting in a simpler term.

There was no advantage in treating this *don't care* condition as a (1), thus it was treated as a (0) and not grouped.

Example #4: Don't Care Conditions

Example:

After labeling and transferring the truth table data into the K-Map, write the simplified sum-of-products (SOP) logic expression for the logic function F_4 . Be sure to take advantage of the *don't care* conditions.

R	S	Т	U	F_4
0	0	0	0	Х
0	0	0	1	0
0	0	1	0	1
0	0	1	1	Х
0	1	0	0	0
0	1	0	1	Х
0	1	1	0	Х
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	Х
1	1 1		0	Х
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Example #4: Don't Care Conditions

Example:

After labeling and transferring the truth table data into the K-Map, write the simplified sum-of-products (SOP) logic expression for the logic function F_4 . Be sure to take advantage of the *don't care* conditions.

Solution:

					_					
R	S	Т	U	F_4		TŪ	ΤU	ΤU	ΤŪ	
0	0	0	0	Х						Г
0	0	0	1	0		Х	0	Х	1	
0	0	1	0	1	K S		Ŭ		·	
0	0	1	1	Х						1
0	1	0	0	0	RS	0	Х	1	Х	
0	1	0	1	Х						
0	1	1	0	Х						
0	1	1	1	1	RS	Х	0	0	0	
1	0	0	0	1						- KS
1	0	0	1	1				V		
1	0	1	0	1	RS	1	1	X	1	
1	0	1	1	Х						
1	1	0	0	Х						
1	1	0	1	0	_	— —		_		
1	1	1	0	0		= R I	+RS	5		28
1	1	1	1	0	+					