Signal and System

What is a Signal?

- A signal is a pattern of variation of some form
- Signals are variables that carry information
- Examples of signal include:
- Electrical signals
- Voltages and currents in a circuit
- Acoustic signals
- Acoustic pressure (sound) over time
- Mechanical signals
- Velocity of a car over time
- Video signals
- Intensity level of a pixel (camera, video) over time

How is a Signal Represented?

- Mathematically, signals are represented as a function of one or more independent variables.
- For instance a black \& white video signal intensity is dependent on x, y coordinates and time $t f(x, y, t)$
- On this course, we shall be exclusively concerned with signals that are a function of a single variable: time

Continuous \& Discrete-Time Signals

- Continuous-Time Signals
- Most signals in the real world are continuous time, as the scale is infinitesimally fine.
- Eg voltage, velocity,
- Denote by $x(t)$, where the time interval may be bounded (finite) or infinite
- Discrete-Time Signals
- Some real world and many digital signals are discrete time, as they are sampled
- E.g. pixels, daily stock price (anything that a digital computer processes)
- Denote by $x[n]$, where n is an integer value that varies discretely
- Sampled continuous signal $x[n]=x(n k)-$ k is sample time

Signal Properties

- On this course, we shall be particularly interested in signals with certain properties:
- Periodic signals: a signal is periodic if it repeats itself after a fixed period T, i.e. $x(t)=x(t+T)$ for all t. A $\sin (t)$ signal is periodic.
- Even and odd signals: a signal is even if $x(-t)=\mathrm{x}(t)$ (i.e. it can be reflected in the axis at zero). A signal is odd if $x(-t)=-x(t)$. Examples are $\cos (t)$ and $\sin (t)$ signals, respectively.
- Exponential and sinusoidal signals: a signal is (real) exponential if it can be represented as $x(t)=C e^{a t}$. A signal is (complex) exponential if it can be represented in the same form but C and a are complex numbers.
- Step and pulse signals: A pulse signal is one which is nearly completely zero, apart from a short spike, $d(t)$. A step signal is zero up to a certain time, and then a constant value after that time, $u(t)$.
- These properties define a large class of tractable, useful signals and will be further considered in the coming lectures

What is a System?

- Systems process input signals to produce output signals
- Examples:
- A circuit involving a capacitor can be viewed as a system that transforms the source voltage (signal) to the voltage (signal) across the capacitor
- A CD player takes the signal on the CD and transforms it into a signal sent to the loud speaker
- A communication system is generally composed of three sub-systems, the transmitter, the channel and the receiver. The channel typically attenuates and adds noise to the transmitted signal which must be processed by the receiver

How is a System Represented?

- A system takes a signal as an input and transforms it into another signal

- In a very broad sense, a system can be represented as the ratio of the output signal over the input signal
- That way, when we "multiply" the system by the input signal, we get the output signal
- This concept will be firmed up in the coming weeks

Properties of a System

- On this course, we shall be particularly interested in signals with certain properties:
- Causal: a system is causal if the output at a time, only depends on input values up to that time.
- Linear: a system is linear if the output of the scaled sum of two input signals is the equivalent scaled sum of outputs
- Time-invariance: a system is time invariant if the system's output is the same, given the same input signal, regardless of time.
- These properties define a large class of tractable, useful systems and will be further considered in the coming lectures
- 2. Even and odd signals:

Even:

$$
\begin{gathered}
x(-\mathrm{t})=\mathrm{x}(\mathrm{t}) \\
\mathrm{x}[-\mathrm{n}]=\mathrm{x}[\mathrm{n}]
\end{gathered}
$$

Odd:

$$
\begin{aligned}
\mathrm{x}(-\mathrm{t}) & =-\mathrm{x}(\mathrm{t}) \\
\mathrm{x}[-\mathrm{n}] & =-\mathrm{x}[\mathrm{n}]
\end{aligned}
$$

- Any signal $x(t)$ can be expressed as

$$
\begin{aligned}
& x(t)=x e(t)+x o(t)) \\
& x(-t)=x e(t)-x o(t)
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{xe}(\mathrm{t}) & =1 / 2(\mathrm{x}(\mathrm{t})+\mathrm{x}(-\mathrm{t})) \\
\mathrm{xo}(\mathrm{t}) & =1 / 2(\mathrm{x}(\mathrm{t})-\mathrm{x}(-\mathrm{t}))
\end{aligned}
$$

- 3. Periodic and non-periodic signals:

- CT signal: if $x(t)=x(t+T)$, then $x(t)$ is periodic.
* Smallest T=Fundamental period: To
* Fundamental frequency fo $=1 / \mathrm{To}(\mathrm{Hz}$ or cycles/second)
* Angular frequency: o $\boldsymbol{\omega} \boldsymbol{\theta} 2 \quad / \mathrm{T} \delta \boldsymbol{J}(\mathrm{rad} /$ seconds)
- DT signal: if $x[n]=x[n+N]$, then $x[n]$ is periodic.
* min(No): fundamental period
* Fo $=1 /$ No (cycles/sample)
* $\Omega_{2} 2 \pi / \mathrm{N}$ (rads/sample). If the unit of n is designated as dimensionless, * then is simply in radians.
- Note: A sampled CT periodic signal may not be DT periodic.

Any Condition addition of two periodic CT signals, resultant be periodic signal ?

- 4. Deterministic and random signals.
- Deterministic signal: No uncertainty with respect to its value at any time
- Completely specified at any time
- Random signal: Uncertain before it occurs. E.g., thermal noise.
- Energy and power signals:
- CT signal $x(t)$:
* Energy: $\mathrm{E}=\int_{-\infty}^{\infty} x^{2}(t) d t$
* Power: $\mathrm{P}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} x^{2}(t) d t$
- DT signal $x[n]$:
- Energy: $\mathrm{E}=\sum_{-\infty}^{\infty} x^{2}[n]$
- Power:

$$
\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N} x^{2}[n]
$$

- Energy signal: if $0<\mathrm{E}<\infty$
- Power signal: if $0<\mathrm{P}<\infty$
- Analog Signal and Digital Signal

Continuous-time,

Discrete-time,

Figure
Examples of continuous-time and discrete-time signals.

Continuous-time,

Continuous-time,

Figure
Examples of continuous-time and digital signals.

Operation	CT	DT	Note
Amplitude scaling	$y(t)=c x(t)$	$y[n]=c x[n]$	$\begin{aligned} & c>1 \text { : gain } \\ & c<1 \text { : atten } \end{aligned}$
Addition	$y(t)=x_{1}(t)+x_{2}(t)$	$y[n]=x_{1}[n]+x_{2}[n]$	
Multiplication	$y(t)=x_{1}(t) x_{2}(t)$	$y[n]=x_{1}[n] x_{2}[n]$	
Differentiation	$y(t)=\frac{d}{d i} x(t)$	(NO DT case)	
Integration	$y(t)=\int_{-\infty}^{t} x(\tau) d \tau$	(NO DT case)	
Time scaling	$\left\{\begin{array}{c} y(t)=x(a t) \\ a>1: \text { compression } \\ a<1: \text { expansion } \end{array}\right.$	$\begin{gathered} y[n]=x[k n] \\ k>0 \text { and integer only } \end{gathered}$	
Reflection (time reversal)	$y(t)=x(-t)$	$y[n]=x[-n]$	
Time shifting	$\left\{\begin{array}{cl} y(t)=x\left(t-t_{0}\right) \\ t_{0}>0: & \text { right shift } \\ t_{0}<0: & \text { left shift } \end{array}\right.$	$\begin{gathered} y[n]=x\left[n-n_{0}\right] \\ \begin{cases}n_{0}>0: & \text { right shift } \\ n_{0}<0: & \text { left shift }\end{cases} \end{gathered}$	
Combination	$y(t)=x\left(a t-t_{0}\right)$	$y[n]=x\left[k n-n_{0}\right]$	

- Rule for time shifting and time scaling:
* See figure below. Find $y(t)=x(2 t+3)$.

Method a)

Basic Operations on Signal(cont.)

1. Exponential

CT	DT
$x(t)=B e^{a t}, a, B$ real	$x[n]=B r^{n}$
$\left\{\begin{array}{ll}a<0: & \text { decaying } \\ a>0: & \text { growing } \\ a=0: & \text { DC }\end{array} \begin{cases}0<r<1: & \text { decaying } \\ r>1: & \text { growing } \\ r=1: \quad \text { DC }\end{cases} \right.$	

2-Sinusoidal

$C T$	DT
$x(t)=A \cos (\omega t+\phi)$	$x[n]=A \cos ([n+\phi)$

Elementary signals

3. Step function

CT	DT
$u(t)=\left\{\begin{array}{cc\|}1, & t>0 \\ 0, & t<0\end{array}\right.$	$u[n]=\left\{\begin{array}{cc}1, & n \geq 0 \\ 0, & n<0\end{array}\right.$

Elementary signals(cont.)
4.Unit impulse function

CT	DT
$\delta(t)=\left\{\begin{array}{l}0, t \neq 0 \\ \int_{-\infty}^{\infty} \delta(t) d t=\int_{0-0}^{0+} \delta(t) d t=1\end{array}\right.$	$\delta[n]=\left\{\begin{array}{l}1, \\ 1, n=0 \\ 0, \\ n \neq 0\end{array}\right.$

5.Unit ramp function

$$
\begin{aligned}
& r(t)= \begin{cases}t, & t \geq 0 \\
0, & t<0\end{cases} \\
& r(t)=t u(t) \\
& u(t)=\frac{d}{d t} r(t)=\frac{d}{d t} \mathrm{i}=1 \\
& r[n]= \begin{cases}n, & n \geq 0 \\
0, & n<0\end{cases}
\end{aligned}
$$

Elementary signals(cont.)

Notation: Let \mathcal{H} represent the system, $x(t) \xrightarrow{\mathcal{H}} y(t)$ represent a system with input $x(t)$ and output $y(t)$.

1. Stability. BIBO (bounded input \Rightarrow bounded output) stability

$$
\begin{aligned}
& |x(t)| \leq M_{x}<\infty \Longrightarrow|y(t)| \leq M_{y}<\infty \\
& |x[n]| \leq M_{x}^{\prime}<\infty \Longrightarrow|y[n]| \leq M_{y}^{\prime}<\infty
\end{aligned}
$$

2.Memory /Memoryless

- Memory system: present output value depend on future/past input.
- Memoryless system: present output value depend only on present input.
- Example

Memory systems:

$$
\begin{aligned}
& y(t)=5 x(t)+\int_{-\infty}^{t} x(\tau) d \tau \\
& y[n]=\sum_{m=n-5}^{n+5} x[m]
\end{aligned}
$$

Memoryless systems:

$$
y[n]=x[n]+x^{2}[n]
$$

3. Causal/noncausal

- Causal: present output depends on present/past values of input.
- Noncausal: present output depends on future values of input.

Note: Memoryless \Rightarrow causal, but causal not necessarily be memoryless.
4. Time invariance (TI): time delay or advance of input \Rightarrow an identical time shift in the output.
Let us define a system mapping $y(t)=\mathcal{H}(x(t))$. The system is time-invariant if

$$
\begin{aligned}
& x\left(t-t_{0}\right) \xrightarrow{\mathcal{H}} y\left(t-t_{0}\right) \\
& x\left[n-n_{0}\right] \xrightarrow{\mathcal{H}} y\left[n-n_{0}\right]
\end{aligned}
$$

System Properties(cont.)
5. Linearity

Linear system: If $x_{1}(t) \xrightarrow{\mathcal{H}} y_{1}(t), x_{2}(t) \xrightarrow{\mathcal{H}} y_{2}(t)$, then $a x_{1}(t)+\operatorname{bx}_{2}(t) \xrightarrow{\mathcal{H}}$ ayy $(t)+b_{y_{2}}(t)$. Else, nonlinear.

- Superposition property (addition)
- Homogeneity (scaling)

System Properties(cont.)

- Invertibility

System Properties(cont.)

- Series(cascade) Interconnection

- Parallel, Intercor

Input

Interconnection of systems

-Feedback Interconnection

Interconnection of systems

