The Z-Transform

Prof. Rasmita Lenka

z-Transform

- The z-transform is the most general concept for the transformation of discrete-time series.
- The Laplace transform is the more general concept for the transformation of continuous time processes.
- For example, the Laplace transform allows you to transform a differential equation, and its corresponding initial and boundary value problems, into a space in which the equation can be solved by ordinary algebra.
- The switching of spaces to transform calculus problems into algebraic operations on transforms is called operational calculus. The Laplace and z transforms are the most important methods for this purpose.

The Transforms

The Laplace transform of a function $f(t)$:

$$
F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

The one-sided z-transform of a function $x(n)$:

$$
X(z)=\sum_{n=0}^{\infty} x(n) z^{-n}
$$

The two-sided z-transform of a function $x(n)$:

$$
X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n}
$$

Relationship to Fourier Transform

Note that expressing the complex variable z in polar form reveals the relationship to the Fourier transform:

$$
\begin{aligned}
& X\left(r e^{i \omega}\right)=\sum_{n=-\infty}^{\infty} x(n)\left(r e^{i \omega}\right)^{-n}, \text { or } \\
& X\left(r e^{i \omega}\right)=\sum_{n=-\infty}^{\infty} x(n) r^{-n} e^{-i \omega n}, \text { and if } r=1
\end{aligned}
$$

$$
X\left(e^{i \omega}\right)=X(\omega)=\sum_{n=-\infty}^{\infty} x(n) e^{-i \omega n}
$$

which is the Fourier transform of $x(n)$.

Region of Convergence

The z-transform of $x(n)$ can be viewed as the Fourier transform of $x(n)$ multiplied by an exponential sequence r^{n}, and the z-transform may converge even when the Fourier transform does not.

By redefining convergence, it is possible that the Fourier transform may converge when the \mathbf{z}-transform does not.

For the Fourier transform to converge, the sequence must have finite energy, or:

$$
\sum_{n=-\infty}^{\infty}\left|x(n) r^{-n}\right|<\infty
$$

Convergence, continued

The power series for the z-transform is called a Laurent series:

$$
X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n}
$$

The Laurent series, and therefore the z-transform, represents an analytic function at every point inside the region of convergence, and therefore the z-transform and all its derivatives must be continuous functions of z inside the region of convergence.

In general, the Laurent series will converge in an annular region of the z-plane.

Properties of The ROC of Z-Transform

- The ROC is a ring or disk centered at the origin
- DTFT exists if and only if the ROC includes the unit circle
- The ROC cannot contain any poles
- The ROC for finite-length sequence is the entire z-plane
- except possibly $\mathrm{z}=0$ and $\mathrm{z}=\infty$
- The ROC for a right-handed sequence extends outward from the outermost pole possibly including $\mathrm{z}=\infty$
- The ROC for a left-handed sequence extends inward from the innermost pole possibly including $\mathrm{z}=0$
- The ROC of a two-sided sequence is a ring bounded by poles
- The ROC must be a connected region
- A z-transform does not uniquely determine a sequence without specifying the ROC

Stability, Causality, and the ROC

- Consider a system with impulse response $h[n]$
- The z-transform $\mathrm{H}(\mathrm{z})$ and the pole-zero plot shown below
- Without any other information $\mathrm{h}[\mathrm{n}]$ is not uniquely determined
- $|z|>2$ or $|z|<1 / 2$ or $1 / 2<|z|<2$
- If system stable ROC must include unit-circle: $1 / 2<|\mathrm{z}|<2$
- If system is causal

Poles and Zeros

When $X(z)$ is a rational function, i.e., a ration of polynomials in z, then:

1. The roots of the numerator polynomial are referred to as the zeros of $X(z)$, and
2. The roots of the denominator polynomial are referred to as the poles of $X(z)$.

Note that no poles of $X(z)$ can occur within the region of convergence since the ztransform does not converge at a pole.

Furthermore, the region of convergence is bounded by poles.

Example

$$
x(n)=a^{n} u(n)
$$

The z-transform is given by:

$$
X(z)=\sum_{n=-\infty}^{\infty} a^{n} u(n) z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}
$$

Which converges to:

$$
X(z)=\frac{1}{1-a z^{-1}}=\frac{z}{z-a} \text { for }|z|>|a|
$$

Clearly, $X(z)$ has a zero at $z=0$ and a pole at $z=a$.

Inverse z-Transform

The inverse z-transform can be derived by using Cauchy's integral theorem. Start with the z -transform

$$
X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n}
$$

Multiply both sides by z^{k-1} and integrate with a contour integral for which the contour of integration encloses the origin and lies entirely within the region of convergence of $X(z)$:

$$
\begin{aligned}
\frac{1}{2 \pi i} \oint_{C} X(z) z^{k-1} d z & =\frac{1}{2 \pi i} \oint_{C} \sum_{n=-\infty}^{\infty} x(n) z^{-n+k-1} d z \\
& =\sum_{n=-\infty}^{\infty} x(n) \frac{1}{2 \pi i} \oint_{C} z^{-n+k-1} d z \\
\frac{1}{2 \pi i} \oint_{C} X(z) z^{k-1} d z & =x(n) \text { is the inverse } z-\text { transform. }
\end{aligned}
$$

Properties

- z-transforms are linear:

$$
\mathcal{Z}[a x(n)+b y(n)]=a X(z)+b Y(z)
$$

- The transform of a shifted sequence:

$$
\mathcal{P}\left[x\left(n+n_{0}\right)\right]=z^{n_{0}} X(z)
$$

- Multiplication:

$$
\delta\left\lfloor a^{n} x(n)\right]=Z\left(a^{-1} z\right)
$$

But multiplication will affect the region of convergence and all the pole-zero locations will be scaled by a factor of a.

BIBO Stability

- Rule \#1: Poles inside unit circle (causal signals)
- Rule \#2: Unit circle in region of convergence

Analogy in continuous-time: imaginary axis would be in region of convergence of Laplace transform

- Example: $a^{n} u[n] \leftrightarrow \frac{1}{1-a z^{-1}}$ for $|z|>|a|$

BIBO stable if $|a|<1$ by rule \#1
BIBO stable if $|z|>|a|$ includes unit circle; hence, $|a|$ < 1 by rule \#2

BIBO means Bounded-Input Bounded-Output

Inverse z-transform

- Definition $h[n]=\frac{1}{2 \pi j} \oint_{R} H(z) z^{-n+1} d z$
- Using the definition requires a contour integration in the complex z-plane
Use Cauchy residue theorem (from complex analysis) OR Use transform tables and transform pairs?
- Fortunately, we tend to be interested in only a few basic signals (pulse, step, etc.)
Virtually all signals can be built from these basic signals For common signals, z-transform pairs have been tabulated

Example

$$
\begin{aligned}
& X(z)=\frac{z^{2}+2 z+1}{z^{2}-\frac{3}{2} z+\frac{1}{2}} \\
& X(z)=\frac{1+2 z^{-1}+z^{-2}}{1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}} \\
& X(z)=\frac{1+2 z^{-1}+z^{-2}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-z^{-1}\right)} \\
& X(z)=B_{0}+\frac{A_{1}}{1-\frac{1}{2} z^{-1}}+\frac{A_{2}}{1-z^{-1}}
\end{aligned}
$$

- Ratio of polynomial zdomain functions
- Divide through by the highest power of z
- Factor denominator into first-order factors
- Use partial fraction decomposition to get first-order terms

Example (con't)

$$
\begin{array}{ll}
\frac { 1 } { 2 } z ^ { - 2 } - \frac { 3 } { 2 } z ^ { - 1 } + 1 \longdiv { z ^ { - 2 } + 2 z ^ { - 1 } + 1 } & \text { - Find } B_{0} \text { by } \\
\frac{z^{-2}-3 z^{-1}+2}{5 z^{-1}-1} & \text { polynomial division } \\
X(z)=2+\frac{-1+5 z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-z^{-1}\right)} & \text { • Express in terms of } \\
B_{0}
\end{array} \quad \begin{array}{ll}
A_{1}=\left.\frac{1+2 z^{-1}+z^{-2}}{1-z^{-1}}\right|_{z^{-1}=2}=\frac{1+4+4}{1-2}=-9 & \text { - Solve for } A_{1} \text { and } A_{2} \\
A_{2}=\left.\frac{1+2 z^{-1}+z^{-2}}{1-\frac{1}{2} z^{-1}}\right|_{z^{-1}=1}=\frac{1+2+1}{\frac{1}{2}}=8 &
\end{array}
$$

Example (con't)

- Express $X(z)$ in terms of B_{0}, A_{1}, and A_{2}

$$
X(z)=2-\frac{9}{1-\frac{1}{2} z^{-1}}+\frac{8}{1-z^{-1}}
$$

- Use table to obtain inverse z-transform

$$
x[n]=2 \delta[n]-9\left(\frac{1}{2}\right)^{n} u[n]+8 u[n]
$$

- With the unilateral z-transform, or the bilateral z-transform with region of convergence, the inverse z-transform is unique

Z-transform Properties

- Linearity $a_{1} x_{1}[n]+a_{2} x_{2}[n] \Leftrightarrow a_{1} X_{1}(z)+a_{2} X_{2}(z)$
- Right shift (delay)

$$
\begin{gathered}
x[n-m] u[n-m] \Leftrightarrow z^{-m} X(z) \\
x[n-m] u[n] \Leftrightarrow z^{-m} X(z)+z^{-m}\left(\sum_{l=1}^{m} x[-l] z^{\prime}\right)
\end{gathered}
$$

Second property used in solving difference equations Second property derived in Appendix N of course reader by decomposing the left-hand side as follows:
$x[n-m] u[n]=x[n-m](u[n]-u[n-m])+x[n-m] u[n-$ m]

Z-transform Properties

$$
f_{1}[n] * f_{2}[n]=\sum_{m=-\infty}^{\infty} f_{1}[m] f_{2}[n-m]
$$

- Convolution definition
$Z\left\{f_{1}[n] * f_{2}[n]\right\}=Z\left\{\sum_{m=-\infty}^{\infty} f_{1}[m] f_{2}[n-m]\right\}$
- Take z-transform

$$
\begin{aligned}
& =\sum_{n=-\infty}^{\infty}\left(\sum_{m=-\infty}^{\infty} f_{1}[m] f_{2}[n-m]\right) z^{-n} \\
& =\sum_{m=-\infty}^{\infty} f_{1}[m] \sum_{n=-\infty}^{\infty} f_{2}[n-m] z^{-n}
\end{aligned}
$$

$$
=\sum_{m=-\infty}^{\infty} f_{1}[m] \sum_{r=-\infty}^{\infty} f_{2}[r] z^{-(r+m)} \quad \text { - Substitute } \boldsymbol{r}=\boldsymbol{n}-\boldsymbol{m}
$$

$$
=\left(\sum_{m=-\infty}^{\infty} f_{1}[m]^{-m}\right)\left(\sum_{r=-\infty}^{\infty} f_{2}[r]^{-r}\right) \bullet \text { Z-transform definition }
$$

$$
=F_{1}(z) F_{2}(z)
$$

