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Fourier Series

7.1 General Properties
Fourier series

A Fourier series may be defined as an expansion of a function in a series
of sines and cosines such as

f () :a—zo-l—Z(an cosnx +b_sinnx). (7.1)
n=1

The coefficients are related to the periodic function f(x)
by definite integrals: Eq.(7.11) and (7.12) to be mentioned later on.

The Dirichlet conditions:
(1) f(x) is a periodic function;
(2) f(x) has only a finite number of finite discontinuities;
(3) f(x) has only a finite number of extrem values, maxima and minima in the
interval [0,2m].

Fourier series are named in honor of Joseph Fourier (1768-1830), who made important
contributions to the study of trigonometric series,



f(x) ==+ (a,cosnx+b, sinnx).
n=1

Express cos nx and sin nx in exponential form, we may rewrite Eq.(7.1) as

1 inx —inx . . i inx  4—inx
CoOSNX =— 5 (e +€ ) SINNX = > (e € )

f(x)= > c.e™ (7.2)

In which 1
G, = E(an - ibn)’
1 (7.3)
C_, = E(a” +1b,), n>0,
and 1



Completeness

One way to show the completeness of the Fourier series is to transform
the trigonometric Fourier series into exponential form and compare
It with a Laurent series.

If we expand f(z) in a Laurent series(assuming f(z) is analytic),

f2)=Ydz. @4

N=-—o0

On the unitcircle 7 =@ 4ng

17 in@
f(z)=1(e")= r]Zcmdne : (7.5)
The Laurent expansion on the unit circle has the same form as the complex Fourier
series, which shows the equivalence between the two expansions. Since the Laurent
series has the property of completeness, the Fourier series form a complete set.
There is a significant limitation here. Laurent series cannot handle discontinuities
such as a square wave or the sawtooth wave.



We can easily check the orthogonal relation for different values of the eigenvalue n by
choosing the interval  [0,27]

" sinmxsin nxdx = o M0,
: 1o m=o U7
21 0y, M#O, (7.8)

; COS MX cos nxdx = {

27, m=n=0,

2r
. sin mx cos nxdx =0 forall integermandn.  (7.9)



By use of these orthogonality, we are able to obtain the coefficients

f(x)= a_20 + > (a, cosnx + by sinnx).

n=1
multipling cos mx, and then integral from QO to 2

Tcos(mx) f(x)dx= % 2fcos(mx)dx + i (a, 2fcos(nx) cos(mx)dx +b. 2fsin(nx) cos(mx)dx)

Similarly
2r a 2 0 2r 2r
j sin(mx) f (x)dx = ?O j sin(mx)dx+ )" (a, | cos(nx)sin(mx)dx+b, [ sin(nx)sin(mx)dx)
0 0 =1 0 0
1 27
a, =— j f (t) cos ntdt, (7.11)
T 0

1 2r :

Substituting them into Eq.(7.1), we write



1 e27 1& 27 ) 27 )
f(x):—0 f(t)dt+;Z(cosnxjO f(t)cosntdt+smnxj0 f (t) sin ntdt)

1 e2n 1 & 27
== f(t)dt+;Zj f (t)cosn(t — x)dt, (7.13)

n=l g

This equation offers one approach to the development of the Fourier integral and
Fourier transforms.
pd
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Sawtooth wave

Let us consider a sawtooth wave

X, 0<x<rx
f(x) ={ (7.14)

X—2m, mw<X<2rm.

For convenience, we shall shift our interval from [0,27 |to [-z,z] . In this interval

we have simply f(x)=x. Using Egs.(7.11) and (7.12), we have



1 ¢~

a,=—/| tcosntdt=0
72' o —7T
b, = 1 "t sin ntdt = Ertsin ntdt
JT Y7 TT 0
= i[—tcos nt|_ + r CoS ntdt]
M 0
— E(_l)n+1’
n
So, the expansion of f(x) reads
: sin2x  sin3x g SIN nx
f(X)=x=2|sIinXx— + 3 +(-1) cee ], (7.15)

Figure 7.1 shows f(x) for the sum of 4, 6, and 10 terms of the series.
Three features deserve comment.
1.There is a steady increase in the accuracy of the representation as the number of

terms included is increased.
2.All the curves pass through the midpoint f(x) =0 at X=7



7.2 ADVANTAGES, USES OF FOURIER SERIES

eDiscontinuous Function

One of the advantages of a Fourier representation over some other representation,
such as a Taylor series, is that it may represent a discontinuous function. An example
id the sawtooth wave in the preceding section. Other examples are considered in
Section 7.3 and in the exercises.

ePeriodic Functions

Related to this advantage is the usefulness of a Fourier series representing a periodic
functions . If f(x) has a period of 27, perhaps it is only natural that we expand it in
a series of functions with period 2z, 27/2 ,27/3 ---  This guarantees that if

our periodic f(x) is represented over one interval [0,27] or [-7,7] the
representation holds for all finite x.



At this point we may conveniently consider the properties of symmetry. Using the
interval [-z,7z] , sinx isoddand cosx isan even function of x. Hence ,

by Egs. (7.11) and (7.12), if f(x) is odd, all a, =0 if f(x) isevenall b, =0 .In
other words,

f(x)_ +Za cosnx, T(X) enen, (7.21)

n=1

f(x)=> b, sinnx, f(x) odd (7.21)

Frequently these properties are helpful in expanding a given function.

We have noted that the Fourier series periodic. This is important in considering
whether Eq. (7.1) holds outside the initial interval. Suppose we are given only that

f(x)=x, 0<x<rx (7.23)

and are asked to represent f(x) by a series expansion. Let us take three of the
Infinite number of possible expansions.



Continuous Fourier Transform (FT)

« Transforms a signal (i.e., function) from the spatial
(x) domain to the frequency (u) domain.

Forward FT: F(f(x)) = F(u) = J F(x)e 7™ dx

Inverse FT: F_l (F(u)) = f(x) = J F(u)e!™ du

— 0

where el — cos(0) x jsin(6)



Fourier Transform — more formally

Represent the signal as an infinite weighted sum
of an infinite number of sinusoids

F(u)= ro f(x)e "™ dx

—00
Note: e" =cosk+isink i=+/-1
Arbitrary function —> Single Analytic Expression

Spatial Domain (x) ——> Frequency Domain (u)
(Frequency Spectrum F(u))

Inverse Fourier Transform (IFT)

f(x)= foo F(u)e™”™dx



Fourier Transform

e Also, defined as:

F(u)= f f(x)e"*dx
Note: €% =cosk+isink i=+—1

* Inverse Fourier Transform (IFT)

f(x)= 1 F(u)e"dx

27T =



Fourier Transform Pairs ()

FOURIER TRANSFORM PAIRS

f(x) F (u)
Rectangle function Sinc function Unit impulse  §(x)
1 1
- 1 4 1
2 Rect (x) ? . sin 7y
Sinc (u)= —— 1

Triangle function

1
/T\ Unit step
Sinc? (u)

1
£ > %6(u)+2_”.‘.l
2 2
Exponential %
_N ,/\;2-::{_2‘;;‘72
Gau:ssian |
e’ Te .k
o a
/\ Note that these are derived using
, angular frequency (@ '\




Fourier Transform Pairs ()

Comb function 1 T s(t-2)
oo —o0 X0
T 8 (x—nxg)
i |1 BB
T e w2 2 o 12
X X0
cos 2mwq X 318 (E—wg) +8 (E+wy) )

N YA
AR 1\1

12]'[’5 (g—-wo)+6(E+w0)]

Nau | Wl

Note that these are derived using
angular frequency (e™'")




Properties of Fourier Transform

Linearity

Scaling

Shifting

Symmetry
Conjugation

Convolution

Differentiation

Spatial Domain (x)
c, f(x)+¢,9(x)

f (ax)

f(X—XO)

F(x)

f*(x)

f(x)*g(x)

d"f(x)
dx"

Frequency Domain (u)

c,F(u)+c,G(u)

1 u
)

e 7™ F(u)
f(-u)
F*(-u)
F(u)G(u)
(i2zu)" F(u)

Note that these are derived using
frequency ( =127k



Properties of Fourier Transform

Parseval’s theorem:

ilf(x)lzdx = le(ﬁ)lzdf

Jr@e ) ax = [F@©)6*© a

f(x) F(¢)
Real(R) Real part even (RE)
Imaginary part odd (10)
Imaginary (I) RO.IE
RE,IO R
RE,IE I
RE RE
RO 10
IE [E
10 RO
Complex even (CE) CE
CO CcO




