Model Order Reduction by Routh Stability Array with Stability Equation Method for SISO and MIMO Systems

D. K. Sambariya, A. S. Rajawat Department of Electrical Engineering, Rajasthan Technical University, Kota

> Presented By Priyadarshinee Das

Introduction

- Dynamic stability analysis of a large interconnected power system is extremely time consuming and laborious and may even exceed the storage capacity of modern fast computers because of the high order of the system.
- The simplification of higher-order transfer function by low-order models is often helpful in the analysis, simulation and design complex control system.
- The methods discussed are mainly use the transfer function and are applicable to both single-input single-output(SISO) and multi-input multi-output(MIMO) systems.

Objective

- The main objective of this research is to present a technique for obtaining reduced-order models for higher-order continuous time systems.
- The step response performance of the reduced models gets compared to the original system as well as reduced models in literature in terms of rise- time, settling-time of the system
- To obtain a reduced order approximants of a complex high order system that retains and reflects the important characteristics of the original system.

Literature review

SI. No.	Title	Author	Year	Remark
1	Model order reduction by integral squared error minimization using bat algorithm	D.K. Sambariy a H. Manohar	IEEE 2014	Higher order system reduced to lower order system by using bat algorithm
2	Preservation of stability for reduced order model of large scale systems using differentiation method,	D.K. Sambariy a H. Manohar	British Journal of Mathematics & Computer Science,2016	Differentiation method is used for reducing both numerator as well as denominator

Methodology

- The methods used are Routh stability array (RSA) method and stability equation (SE) method to get the reduced model of systems.
- The step response performance of the reduced models gets compared to the original system as well as reduced models.

Results and Finding

Considering a 4th order single input single output system has reduced to a 2nd order system and comparison of step response with original system to reduced order system.

CONTRIBUTION OF THE RESEARCH

• Some new mixed methods can be used to obtain a reduced order transfer function from the original transfer function.

LIMITATIONS

- Poor matching in high frequency zone.
- Error has not been calculated.

FUTURE RESEARCH

 Some new mixed methods for reduced-order modeling are proposed. These methods uses (i) Dominant pole (ii) RSA

(iii) successive differentiation approaches to determine denominator and TMs/MPs matching technique to find numerator for better steady state matching.

THANK YOU